Prum Richard O, Dufresne Eric R, Quinn Tim, Waters Karla
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S253-65. doi: 10.1098/rsif.2008.0466.focus.
The non-iridescent structural colours of avian feather barbs are produced by coherent light scattering from amorphous (i.e. quasi-ordered) nanostructures of beta-keratin and air in the medullary cells of feather barb rami. Known barb nanostructures belong to two distinct morphological classes. 'Channel' nanostructures consist of beta-keratin bars and air channels of elongate, tortuous and twisting forms. 'Spherical' nanostructures consist of highly spherical air cavities that are surrounded by thin beta-keratin bars and sometimes interconnected by tiny passages. Using transmission electron microscopy, we observe that the colour-producing channel-type nanostructures of medullary beta-keratin in feathers of the blue-and-yellow macaw (Ara ararauna, Psittacidae) develop by intracellular self-assembly; the process proceeds in the absence of any biological prepattern created by the cell membrane, endoplasmic reticulum or cellular intermediate filaments. We examine the hypothesis that the shape and size of these self-assembled, intracellular nanostructures are determined by phase separation of beta-keratin protein from the cytoplasm of the cell. The shapes of a broad sample of colour-producing channel-type nanostructures from nine avian species are very similar to those self-assembled during the phase separation of an unstable mixture, a process called spinodal decomposition (SD). In contrast, the shapes of a sample of spherical-type nanostructures from feather barbs of six species show a poor match to SD. However, spherical nanostructures show a strong morphological similarity to morphologies produced by phase separation of a metastable mixture, called nucleation and growth. We propose that colour-producing, intracellular, spongy medullary beta-keratin nanostructures develop their characteristic sizes and shapes by phase separation during protein polymerization. We discuss the possible role of capillary flow through drying of medullary cells in the development of the hollow morphology of typical and spongy feather medullary cells.
鸟类羽毛羽枝的非虹彩结构色是由羽枝轴髓细胞中β -角蛋白和空气的无定形(即准有序)纳米结构产生的相干光散射所致。已知的羽枝纳米结构属于两种不同的形态类别。“通道”纳米结构由β -角蛋白条和细长、曲折且扭曲的空气通道组成。“球形”纳米结构由高度球形的气腔组成,这些气腔被薄的β -角蛋白条包围,有时通过微小通道相互连接。利用透射电子显微镜,我们观察到蓝黄金刚鹦鹉(Ara ararauna,鹦鹉科)羽毛髓质β -角蛋白中产生颜色的通道型纳米结构是通过细胞内自组装形成的;该过程在没有由细胞膜、内质网或细胞中间丝产生的任何生物预模式的情况下进行。我们检验了这样一种假设,即这些自组装的细胞内纳米结构的形状和大小是由β -角蛋白从细胞质中相分离所决定的。来自九种鸟类的大量产生颜色的通道型纳米结构样本的形状与不稳定混合物相分离过程中自组装的形状非常相似,这一过程称为旋节线分解(SD)。相比之下,来自六种鸟类羽枝的球形纳米结构样本的形状与SD的匹配度较差。然而,球形纳米结构与亚稳混合物相分离产生的形态具有很强的形态相似性,称为成核生长。我们提出,产生颜色的细胞内海绵状髓质β -角蛋白纳米结构在蛋白质聚合过程中通过相分离形成其特征尺寸和形状。我们讨论了髓细胞干燥过程中的毛细管流动在典型和海绵状羽毛髓细胞中空形态形成过程中可能发挥的作用。