Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA.
J R Soc Interface. 2012 Oct 7;9(75):2563-80. doi: 10.1098/rsif.2012.0191. Epub 2012 May 9.
Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities. Using synchrotron small angle X-ray scattering (SAXS) and optical spectrophotometry, we characterized the nanostructure and optical function of 297 distinctly coloured feathers from 230 species belonging to 163 genera in 51 avian families. The SAXS data provided quantitative diagnoses of the channel- and sphere-type nanostructures, and confirmed the presence of a predominant, isotropic length scale of variation in refractive index that produces strong reinforcement of a narrow band of scattered wavelengths. The SAXS structural data identified a new class of rudimentary or weakly nanostructured feathers responsible for slate-grey, and blue-grey structural colours. SAXS structural data provided good predictions of the single-scattering peak of the optical reflectance of the feathers. The SAXS structural measurements of channel- and sphere-type nanostructures are also similar to experimental scattering data from synthetic soft matter systems that self-assemble by phase separation. These results further support the hypothesis that colour-producing protein and air nanostructures in feather barbs are probably self-assembled by arrested phase separation of polymerizing β-keratin from the cytoplasm of medullary cells. Such avian amorphous photonic nanostructures with isotropic optical properties may provide biomimetic inspiration for photonic technology.
羽毛的非闪色结构色是许多鸟类表型的一个多样化且重要的部分。这些颜色通常是由三维、无定形(或准有序)的海绵状β-角蛋白和羽毛羽枝髓质细胞中的空气纳米结构产生的。已知有两种主要的三维羽枝纳米结构类型,其特征为曲折的空气通道网络或球形空气腔的紧密堆积。利用同步加速器小角 X 射线散射(SAXS)和分光光度法,我们对来自 51 个鸟类科的 163 属 230 个种的 297 种具有明显颜色的羽毛的纳米结构和光学功能进行了表征。SAXS 数据提供了对通道型和球型纳米结构的定量诊断,并证实了存在一个主要的各向同性折射率变化的长度尺度,这产生了对散射波长窄带的强烈增强。SAXS 结构数据确定了一种新的基本或弱纳米结构羽毛类别,负责石板灰色和蓝灰色结构色。SAXS 结构数据很好地预测了羽毛光学反射率的单次散射峰。通道型和球型纳米结构的 SAXS 结构测量结果也与通过相分离自组装的合成软物质系统的实验散射数据相似。这些结果进一步支持了这样的假设,即羽毛羽枝中产生颜色的蛋白质和空气纳米结构可能是通过聚合β-角蛋白从髓质细胞细胞质中的相分离被捕获而自组装形成的。具有各向同性光学性质的这种鸟类非晶态光子纳米结构可能为光子技术提供仿生灵感。