Suppr超能文献

麻醉并迷走神经切断的新生大鼠的腹部呼气肌活动。

Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats.

机构信息

Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki, 300-0394, Japan.

出版信息

J Physiol Sci. 2009 May;59(3):157-63. doi: 10.1007/s12576-009-0020-3. Epub 2009 Feb 6.

Abstract

The pattern of respiratory activity in abdominal muscles was studied in anesthetized, spontaneously breathing, vagotomized neonatal rats at postnatal days 0-3. Anesthesia (2.0% isoflurane, 50% O(2)) depressed breathing and resulted in hypercapnia. Under this condition, abdominal muscles showed discharge late in the expiratory phase (E2 activity) in most rats. As the depth of anesthesia decreased, the amplitude of discharges in the diaphragm and abdominal muscles increased. A small additional burst frequently occurred in abdominal muscles just after the termination of diaphragmatic inspiratory activity (E1 or postinspiratory activity). Since this E1 activity is not often observed in adult rats, the abdominal respiratory pattern likely changes during postnatal development. Anoxia-induced gasping after periodic expiratory activity without inspiratory activity, and in most rats, abdominal expiratory activity disappeared before terminal apnea. These results suggest that a biphasic abdominal motor pattern (a combination of E2 and E1 activity) is a characteristic of vagotomized neonatal rats during normal respiration.

摘要

在出生后 0-3 天的麻醉、自主呼吸、迷走神经切断的新生大鼠中研究了腹部肌肉的呼吸活动模式。麻醉(2.0%异氟烷,50%O2)抑制呼吸并导致高碳酸血症。在这种情况下,大多数大鼠的腹部肌肉在呼气末期出现放电(E2 活动)。随着麻醉深度的降低,膈和腹部肌肉的放电幅度增加。在膈吸气活动结束后(E1 或吸气后活动),腹部肌肉经常会出现一个小的附加爆发。由于这种 E1 活动在成年大鼠中并不常见,因此腹部呼吸模式可能在出生后发育过程中发生变化。周期性呼气活动后缺氧引起的喘息,而没有吸气活动,并且在大多数大鼠中,腹部呼气活动在终末呼吸暂停之前消失。这些结果表明,双相腹部运动模式(E2 和 E1 活动的组合)是正常呼吸时迷走神经切断的新生大鼠的特征。

相似文献

1
Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats.
J Physiol Sci. 2009 May;59(3):157-63. doi: 10.1007/s12576-009-0020-3. Epub 2009 Feb 6.
2
Abdominal respiratory motor pattern in the rat.
Adv Exp Med Biol. 2010;669:157-61. doi: 10.1007/978-1-4419-5692-7_31.
3
Vagal afferent control of abdominal expiratory activity in response to hypoxia and hypercapnia in rats.
Respir Physiol Neurobiol. 2014 Nov 1;203:90-7. doi: 10.1016/j.resp.2014.08.011. Epub 2014 Sep 10.
4
Anoxic persistence of lumbar respiratory bursts and block of lumbar locomotion in newborn rat brainstem spinal cords.
J Physiol. 2007 Dec 1;585(Pt 2):507-24. doi: 10.1113/jphysiol.2007.143594. Epub 2007 Oct 11.
5
Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation.
J Physiol. 2009 Jul 15;587(Pt 14):3539-59. doi: 10.1113/jphysiol.2008.167502. Epub 2009 Jun 2.
6
Generation of active expiration by serotoninergic mechanisms of the ventral medulla of rats.
J Appl Physiol (1985). 2016 Nov 1;121(5):1135-1144. doi: 10.1152/japplphysiol.00470.2016. Epub 2016 Sep 22.
7
Diaphragmatic activity during biphasic ventilatory response to hypoxia in rats.
Respir Physiol. 1998 Feb;111(2):153-62. doi: 10.1016/s0034-5687(97)00116-3.
8
Effects of an opioid on respiratory movements and expiratory activity in humans during isoflurane anaesthesia.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):425-34. doi: 10.1016/j.resp.2012.08.016. Epub 2012 Aug 25.
9
High-fat diet increases respiratory frequency and abdominal expiratory motor activity during hypercapnia.
Respir Physiol Neurobiol. 2018 Dec;258:32-39. doi: 10.1016/j.resp.2018.10.003. Epub 2018 Oct 9.
10
Abdominal muscle activity during breathing with and without inspiratory and expiratory loads in healthy subjects.
J Electromyogr Kinesiol. 2016 Oct;30:143-50. doi: 10.1016/j.jelekin.2016.07.002. Epub 2016 Jul 5.

引用本文的文献

1
Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
J Neurosci. 2016 Jan 20;36(3):926-37. doi: 10.1523/JNEUROSCI.1825-15.2016.
4
Understanding the rhythm of breathing: so near, yet so far.
Annu Rev Physiol. 2013;75:423-52. doi: 10.1146/annurev-physiol-040510-130049. Epub 2012 Oct 29.

本文引用的文献

1
Factors in Neonatal Resistance to Anoxia. I. Temperature and Survival of Newborn Guinea Pigs Under Anoxia.
Science. 1949 Jul 29;110(2848):113-4. doi: 10.1126/science.110.2848.113.
2
Influence of hypercapnic acidosis and hypoxia on abdominal expiratory nerve activity in the rat.
Respir Physiol Neurobiol. 2007 Aug 1;157(2-3):196-205. doi: 10.1016/j.resp.2007.01.004. Epub 2007 Jan 12.
3
Distinct rhythm generators for inspiration and expiration in the juvenile rat.
J Physiol. 2006 Jan 15;570(Pt 2):407-20. doi: 10.1113/jphysiol.2005.098848. Epub 2005 Nov 17.
4
GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
J Physiol. 2003 Sep 1;551(Pt 2):617-33. doi: 10.1113/jphysiol.2003.042689. Epub 2003 Aug 8.
7
Influence of core temperature on autoresuscitation during repeated exposure to hypoxia in normal rat pups.
J Appl Physiol (1985). 1999 Oct;87(4):1346-53. doi: 10.1152/jappl.1999.87.4.1346.
8
Control of abdominal muscles.
Prog Neurobiol. 1998 Nov;56(4):433-506. doi: 10.1016/s0301-0082(98)00046-x.
9
Characterization and developmental aspects of anoxia-induced gasping in the rat.
Biol Neonate. 1996;70(5):280-8. doi: 10.1159/000244377.
10
Depth profiles of pH and PO2 in the isolated brain stem-spinal cord of the neonatal rat.
Respir Physiol. 1993 Sep;93(3):315-26. doi: 10.1016/0034-5687(93)90077-n.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验