Suppr超能文献

倾向得分与M结构。

Propensity scores and M-structures.

作者信息

Sjölander Arvid

出版信息

Stat Med. 2009 Apr 30;28(9):1416-20; author reply 1420-3. doi: 10.1002/sim.3532.

Abstract

In a recent issue of Statistics in Medicine, Ian Shrier [Statist. Med. 2008; 27(14):2740-2741] posed a question regarding the use of propensity scores [Biometrika 1983; 70(1):41-55]. He considered an 'M-structure' illustrated by the directed acyclic graph (DAG) in Figure 1. In Figure 1, z is a binary exposure, r is a response of interest, x is a measured covariate, and u(1) and u(2) are two unmeasured covariates. Shrier stated that for the M-structure, '... it remains unclear if the propensity method described by Rubin would introduce selection bias or not'. In the same issue, Donald Rubin [Statist. Med. 2002; 27(14):2741-2742] replied by clarifying several key points in the use of propensity scores. He did not, however, discuss the original question posed by Shrier. Given the popularity of both propensity score methods and graphical models, I think any confusion regarding the appropriateness of these methods deserves serious attention and I would therefore like to answer Shrier's question here. The short answer is that for the M-structure, propensity score methods do indeed induce a bias. Below, I will clarify this statement. I will first briefly review the basic idea of propensity scores and then explain why the idea does not apply to the M-structure. I will use a notation which is consistent with Rosenbaum and Rubin [Biometrika 1983; 70(1):41-55].

摘要

在最近一期的《医学统计学》中,伊恩·施里尔[《医学统计学》2008年;27(14):2740 - 2741]就倾向得分的使用提出了一个问题[《生物统计学》1983年;70(1):41 - 55]。他考虑了图1中由有向无环图(DAG)所示的“M结构”。在图1中,z是二元暴露因素,r是感兴趣的反应,x是测量的协变量,u(1)和u(2)是两个未测量的协变量。施里尔指出,对于M结构,“……鲁宾所描述的倾向方法是否会引入选择偏倚仍不清楚”。在同一期杂志中,唐纳德·鲁宾[《医学统计学》2002年;27(14):2741 - 2742]通过阐明倾向得分使用中的几个关键点进行了回应。然而,他没有讨论施里尔提出的原始问题。鉴于倾向得分方法和图形模型都很流行,我认为关于这些方法适用性的任何困惑都值得认真关注,因此我想在此回答施里尔的问题。简短的答案是,对于M结构,倾向得分方法确实会导致偏倚。下面,我将阐明这一说法。我将首先简要回顾倾向得分的基本概念,然后解释为什么该概念不适用于M结构。我将使用与罗森鲍姆和鲁宾[《生物统计学》1983年;70(1):41 - 55]一致的符号表示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验