Suppr超能文献

基于自协方差方法,使用增强的周氏伪氨基酸组成预测蛋白质亚线粒体定位。

Using the augmented Chou's pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach.

作者信息

Zeng Yu-hong, Guo Yan-zhi, Xiao Rong-quan, Yang Li, Yu Le-zheng, Li Meng-long

机构信息

College of Chemistry, Sichuan University, Chengdu 610064, PR China.

出版信息

J Theor Biol. 2009 Jul 21;259(2):366-72. doi: 10.1016/j.jtbi.2009.03.028. Epub 2009 Mar 31.

Abstract

The submitochondria location of a mitochondrial protein is very important for further understanding the structure and function of this protein. Hence, it is of great practical significance to develop an automated and reliable method for timely identifying the submitochondria locations of novel mitochondrial proteins. In this study, a sequence-based algorithm combining the augmented Chou's pseudo amino acid composition (Chou's PseAA) based on auto covariance (AC) is developed to predict protein submitochondria locations and membrane protein types in mitochondria inner membrane. The model fully considers the sequence-order effects between residues a certain distance apart in the sequence by AC combined with eight representative descriptors for both common proteins and membrane proteins. As a result of jackknife cross-validation tests, the method for submitochondria location prediction yields the accuracies of 91.8%, 96.4% and 66.1% for inner membrane, matrix, and outer membrane, respectively. The total accuracy is 89.7%. When predicting membrane protein types in mitochondria inner membrane, the method achieves the prediction performance with the accuracies of 98.4%, 64.3% and 86.7% for multi-pass inner membrane, single-pass inner membrane, and matrix side inner membrane, where the total accuracy is 93.6%. The overall performance of our method is better than the achievements of the previous studies. So our method can be an effective supplementary tool for future proteomics studies. The prediction software and all data sets used in this article are freely available at http://chemlab.scu.edu.cn/Predict_subMITO/index.htm.

摘要

线粒体蛋白的亚线粒体定位对于进一步了解该蛋白的结构和功能非常重要。因此,开发一种自动化且可靠的方法以及时识别新型线粒体蛋白的亚线粒体定位具有重大的现实意义。在本研究中,我们开发了一种基于序列的算法,该算法结合了基于自协方差(AC)的增强型周氏伪氨基酸组成(Chou's PseAA),用于预测线粒体内膜中蛋白质的亚线粒体定位和膜蛋白类型。该模型通过AC结合普通蛋白质和膜蛋白的八个代表性描述符,充分考虑了序列中相隔一定距离的残基之间的序列顺序效应。通过留一法交叉验证测试,亚线粒体定位预测方法在内膜、基质和外膜上的预测准确率分别为91.8%、96.4%和66.1%。总准确率为89.7%。在线粒体内膜中预测膜蛋白类型时,该方法对多次跨膜内膜、单次跨膜内膜和基质侧内膜的预测准确率分别为98.4%、64.3%和86.7%,总准确率为93.6%。我们方法的整体性能优于先前研究的成果。因此,我们的方法可以成为未来蛋白质组学研究的有效补充工具。本文使用的预测软件和所有数据集可在http://chemlab.scu.edu.cn/Predict_subMITO/index.htm免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验