Suppr超能文献

DeepMito 实现大规模预测和分析蛋白质亚线粒体定位

Large-scale prediction and analysis of protein sub-mitochondrial localization with DeepMito.

机构信息

Department of Pharmacy and Biotechnology (FaBiT), Biocomputing Group, University of Bologna, Bologna, Italy.

Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Italian National Research Council (CNR), Bari, Italy.

出版信息

BMC Bioinformatics. 2020 Sep 16;21(Suppl 8):266. doi: 10.1186/s12859-020-03617-z.

Abstract

BACKGROUND

The prediction of protein subcellular localization is a key step of the big effort towards protein functional annotation. Many computational methods exist to identify high-level protein subcellular compartments such as nucleus, cytoplasm or organelles. However, many organelles, like mitochondria, have their own internal compartmentalization. Knowing the precise location of a protein inside mitochondria is crucial for its accurate functional characterization. We recently developed DeepMito, a new method based on a 1-Dimensional Convolutional Neural Network (1D-CNN) architecture outperforming other similar approaches available in literature.

RESULTS

Here, we explore the adoption of DeepMito for the large-scale annotation of four sub-mitochondrial localizations on mitochondrial proteomes of five different species, including human, mouse, fly, yeast and Arabidopsis thaliana. A significant fraction of the proteins from these organisms lacked experimental information about sub-mitochondrial localization. We adopted DeepMito to fill the gap, providing complete characterization of protein localization at sub-mitochondrial level for each protein of the five proteomes. Moreover, we identified novel mitochondrial proteins fishing on the set of proteins lacking any subcellular localization annotation using available state-of-the-art subcellular localization predictors. We finally performed additional functional characterization of proteins predicted by DeepMito as localized into the four different sub-mitochondrial compartments using both available experimental and predicted GO terms. All data generated in this study were collected into a database called DeepMitoDB (available at http://busca.biocomp.unibo.it/deepmitodb ), providing complete functional characterization of 4307 mitochondrial proteins from the five species.

CONCLUSIONS

DeepMitoDB offers a comprehensive view of mitochondrial proteins, including experimental and predicted fine-grain sub-cellular localization and annotated and predicted functional annotations. The database complements other similar resources providing characterization of new proteins. Furthermore, it is also unique in including localization information at the sub-mitochondrial level. For this reason, we believe that DeepMitoDB can be a valuable resource for mitochondrial research.

摘要

背景

蛋白质亚细胞定位预测是蛋白质功能注释的重要步骤。有许多计算方法可用于识别高水平的蛋白质亚细胞区室,如细胞核、细胞质或细胞器。然而,许多细胞器,如线粒体,具有自己的内部区室化。了解蛋白质在线粒体中的精确位置对于其准确的功能特征至关重要。我们最近开发了 DeepMito,这是一种基于 1 维卷积神经网络(1D-CNN)架构的新方法,其性能优于文献中其他类似的方法。

结果

在这里,我们探索了 DeepMito 在大规模注释五个不同物种(包括人类、小鼠、果蝇、酵母和拟南芥)线粒体蛋白质组的四个亚线粒体定位中的应用。这些生物的蛋白质中有很大一部分缺乏关于亚线粒体定位的实验信息。我们采用 DeepMito 来填补空白,为五个蛋白质组中的每一种蛋白质提供亚线粒体水平的完整蛋白质定位特征。此外,我们使用现有的最先进的亚细胞定位预测器,在缺乏任何亚细胞定位注释的蛋白质集中发现了新的线粒体蛋白质。我们最后对 DeepMito 预测为定位于四个不同亚线粒体区室的蛋白质进行了额外的功能特征描述,使用了现有的实验和预测的 GO 术语。本研究中生成的所有数据都被收集到一个名为 DeepMitoDB 的数据库中(可在 http://busca.biocomp.unibo.it/deepmitodb 访问),该数据库提供了五个物种 4307 种线粒体蛋白质的完整功能特征描述。

结论

DeepMitoDB 提供了线粒体蛋白质的全面视图,包括实验和预测的精细亚细胞定位以及注释和预测的功能注释。该数据库补充了其他类似资源,提供了新蛋白质的特征描述。此外,它还具有独特的亚线粒体水平的定位信息。因此,我们认为 DeepMitoDB 可以成为线粒体研究的有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7838/7493403/c4c3aa9d0d82/12859_2020_3617_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验