Suppr超能文献

使用物镜校正环提高活体多光子显微镜中的信号水平。

Improving Signal Levels in Intravital Multiphoton Microscopy using an Objective Correction Collar.

作者信息

Muriello Pamela A, Dunn Kenneth W

机构信息

Department of Medicine, Division of Nephrology, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202-5116.

出版信息

Opt Commun. 2008 Apr 1;281(7):1806-1812. doi: 10.1016/j.optcom.2007.05.070.

Abstract

Multiphoton microscopy has enabled biologists to collect high-resolution images hundreds of microns into biological tissues, including tissues of living animals. While the depth of imaging exceeds that possible from any other form of light microscopy, multiphoton microscopy is nonetheless generally limited to depths of less than a millimeter. Many of the advantages of multiphoton microscopy for deep tissue imaging accrue from the unique nature of multiphoton fluorescence excitation. However, the quadratic relationship between illumination level and fluorescence excitation makes multiphoton microscopy especially susceptible to factors that degrade the illumination focus. Here we examine the effect of spherical aberration on multiphoton microscopy in fixed kidney tissues and in the kidneys of living animals. We find that spherical aberration, as evaluated from axial asymmetry in the point spread function, can be corrected by adjustment of the correction collar of a water immersion objective lens. Introducing a compensatory positive spherical aberration into the imaging system decreased the depth-dependence of signal levels in images collected from living animals, increasing signal by up to 50%.

摘要

多光子显微镜使生物学家能够在包括活体动物组织在内的生物组织中采集深入数百微米的高分辨率图像。虽然成像深度超过了任何其他形式的光学显微镜所能达到的深度,但多光子显微镜一般仍局限于小于一毫米的深度。多光子显微镜用于深层组织成像的许多优势源于多光子荧光激发的独特性质。然而,照明水平与荧光激发之间的二次关系使得多光子显微镜特别容易受到降低照明焦点的因素的影响。在这里,我们研究了球差对固定肾脏组织和活体动物肾脏中多光子显微镜的影响。我们发现,根据点扩散函数中的轴向不对称性评估的球差,可以通过调整水浸物镜的校正环来校正。在成像系统中引入补偿性正球差降低了从活体动物采集的图像中信号水平的深度依赖性,使信号增强了高达50%。

相似文献

1
Improving Signal Levels in Intravital Multiphoton Microscopy using an Objective Correction Collar.
Opt Commun. 2008 Apr 1;281(7):1806-1812. doi: 10.1016/j.optcom.2007.05.070.
2
The effects of spherical aberration on multiphoton fluorescence excitation microscopy.
J Microsc. 2011 May;242(2):157-65. doi: 10.1111/j.1365-2818.2010.03449.x. Epub 2010 Oct 11.
4
Principles of multiphoton microscopy.
Nephron Exp Nephrol. 2006;103(2):e33-40. doi: 10.1159/000090614. Epub 2006 Mar 10.
5
Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
Opt Express. 2017 Mar 20;25(6):7055-7068. doi: 10.1364/OE.25.007055.
6
The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy.
J Microsc. 2011 May;242(2):148-56. doi: 10.1111/j.1365-2818.2010.03448.x. Epub 2010 Sep 27.
7
Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.
J Biomed Opt. 2014 Jan;19(1):011007. doi: 10.1117/1.JBO.19.1.011007.
8
Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution.
Neurophotonics. 2025 Jan;12(Suppl 1):S14602. doi: 10.1117/1.NPh.12.S1.S14602. Epub 2024 Nov 22.
10
Singlet gradient index lens for deep in vivo multiphoton microscopy.
J Biomed Opt. 2012 Feb;17(2):021106. doi: 10.1117/1.JBO.17.2.021106.

引用本文的文献

1
Understanding the in vivo Fate of Advanced Materials by Imaging.
Adv Funct Mater. 2020 Sep 10;30(37). doi: 10.1002/adfm.201910369. Epub 2020 Apr 6.
2
Spatial frequency-based correction of the spherical aberration in living brain imaging.
Microscopy (Oxf). 2024 Feb 7;73(1):37-46. doi: 10.1093/jmicro/dfad035.
3
Adaptive Optical Two-Photon Microscopy for Surface-Profiled Living Biological Specimens.
ACS Omega. 2020 Nov 30;6(1):438-447. doi: 10.1021/acsomega.0c04888. eCollection 2021 Jan 12.
4
Optical alignment device for two-photon microscopy.
Biomed Opt Express. 2018 Jul 9;9(8):3624-3639. doi: 10.1364/BOE.9.003624. eCollection 2018 Aug 1.
5
Adaptive optical versus spherical aberration corrections for brain imaging.
Biomed Opt Express. 2017 Jul 31;8(8):3891-3902. doi: 10.1364/BOE.8.003891. eCollection 2017 Aug 1.
6
Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior.
Adv Drug Deliv Rev. 2017 Apr;113:61-86. doi: 10.1016/j.addr.2016.05.023. Epub 2016 Jun 4.
7
High resolution 4-dimension imaging of metanephric embryonic kidney morphogenesis.
Kidney Int. 2013 Apr;83(4):757-61. doi: 10.1038/ki.2012.464. Epub 2013 Jan 16.
8
The effects of spherical aberration on multiphoton fluorescence excitation microscopy.
J Microsc. 2011 May;242(2):157-65. doi: 10.1111/j.1365-2818.2010.03449.x. Epub 2010 Oct 11.
9
The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy.
J Microsc. 2011 May;242(2):148-56. doi: 10.1111/j.1365-2818.2010.03448.x. Epub 2010 Sep 27.

本文引用的文献

1
Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging.
Opt Express. 2006 Oct 30;14(22):10565-73. doi: 10.1364/oe.14.010565.
2
Influence of optical properties on two-photon fluorescence imaging in turbid samples.
Appl Opt. 2000 Mar 1;39(7):1194-201. doi: 10.1364/ao.39.001194.
4
Spatial distribution of two-photon-excited fluorescence in scattering media.
Appl Opt. 1999 Jan 1;38(1):224-9. doi: 10.1364/ao.38.000224.
5
On the fundamental imaging-depth limit in two-photon microscopy.
J Opt Soc Am A Opt Image Sci Vis. 2006 Dec;23(12):3139-49. doi: 10.1364/josaa.23.003139.
6
Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17137-42. doi: 10.1073/pnas.0604791103. Epub 2006 Nov 6.
7
Rab10 regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney cells.
Mol Biol Cell. 2006 Jul;17(7):3156-75. doi: 10.1091/mbc.e05-08-0799. Epub 2006 Apr 26.
8
Principles of multiphoton microscopy.
Nephron Exp Nephrol. 2006;103(2):e33-40. doi: 10.1159/000090614. Epub 2006 Mar 10.
9
Deep tissue two-photon microscopy.
Nat Methods. 2005 Dec;2(12):932-40. doi: 10.1038/nmeth818.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验