Suppr超能文献

酶修饰的基于纳米多孔金的电化学生物传感器。

Enzyme-modified nanoporous gold-based electrochemical biosensors.

作者信息

Qiu Huajun, Xue Luyan, Ji Guanglei, Zhou Guiping, Huang Xirong, Qu Yinbo, Gao Peiji

机构信息

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of China, Shandong University, Jinan 250100, China.

出版信息

Biosens Bioelectron. 2009 Jun 15;24(10):3014-8. doi: 10.1016/j.bios.2009.03.011. Epub 2009 Mar 19.

Abstract

On the basis of the unique physical and chemical properties of nanoporous gold (NPG), which was obtained simply by dealloying Ag from Au/Ag alloy, an attempt was made in the present study to develop NPG-based electrochemical biosensors. The NPG-modified glassy carbon electrode (NPG/GCE) exhibited high-electrocatalytic activity toward the oxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)), which resulted in a remarkable decrease in the overpotential of NADH and H(2)O(2) electro-oxidation when compared with the gold sheet electrode. The high density of edge-plane-like defective sites and large specific surface area of NPG should be responsible for the electrocatalytic behavior. Such electrocatalytic behavior of the NPG/GCE permitted effective low-potential amperometric biosensing of ethanol or glucose via the incorporation of alcohol dehydrogenase (ADH) or glucose oxidase (GOD) within the three-dimensional matrix of NPG. The ADH- and GOD-modified NPG-based biosensors showed good analytical performance for biosensing ethanol and glucose due to the clean, reproducible and uniformly distributed microstructure of NPG. The stabilization effect of NPG on the incorporated enzymes also made the constructed biosensors very stable. After 1 month storage at 4 degrees C, the ADH- and GOD-based biosensors lost only 5.0% and 4.2% of the original current response. All these indicated that NPG was a promising electrode material for biosensors construction.

摘要

基于通过从金/银合金中脱合金化银而获得的纳米多孔金(NPG)独特的物理和化学性质,本研究尝试开发基于NPG的电化学生物传感器。NPG修饰的玻碳电极(NPG/GCE)对烟酰胺腺嘌呤二核苷酸(NADH)和过氧化氢(H₂O₂)的氧化表现出高电催化活性,与金片电极相比,这导致NADH和H₂O₂电氧化的过电位显著降低。NPG边缘平面状缺陷位点的高密度和大比表面积应是这种电催化行为的原因。NPG/GCE的这种电催化行为通过在NPG的三维基质中掺入乙醇脱氢酶(ADH)或葡萄糖氧化酶(GOD),实现了对乙醇或葡萄糖的有效低电位安培生物传感。基于ADH和GOD修饰的NPG生物传感器对乙醇和葡萄糖的生物传感表现出良好的分析性能,这归因于NPG清洁、可重现且均匀分布的微观结构。NPG对掺入酶的稳定作用也使构建的生物传感器非常稳定。在4℃下储存1个月后,基于ADH和GOD的生物传感器仅损失了原始电流响应的5.0%和4.2%。所有这些表明NPG是用于构建生物传感器的有前途的电极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验