Larkin Angelyn, Imperiali Barbara
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,Massachusetts 02139, USA.
Biochemistry. 2009 Jun 16;48(23):5446-55. doi: 10.1021/bi900186u.
The B-band O-antigen of the lipopolysaccharide found in the opportunistic pathogen Pseudomonas aeruginosa PAO1 (serotype O5) comprises a repeating trisaccharide unit that is critical for virulence and protection from host defense systems. One of the carbohydrates in this repeating unit, the rare diacetylated aminuronic acid derivative 2,3-diacetamido-2,3-dideoxy-beta-d-mannuronic acid (ManNAc(3NAc)A), is thought to be produced by five enzymes (WbpA, WbpB, WbpE, WbpD, and WbpI) in a stepwise manner starting from UDP-GlcNAc. Although the genes responsible for the biosynthesis of this sugar are known, only two of the five encoded proteins (WbpA and WbpI) have been thoroughly investigated. In this report, we describe the cloning, overexpression, purification, and biochemical characterization of the three central enzymes in this pathway, WbpB, WbpE, and WbpD. Using a combination of capillary electrophoresis, RP-HPLC, and NMR spectroscopy, we show that WbpB and WbpE are a dehydrogenase/aminotransferase pair that converts UDP-GlcNAcA to UDP-GlcNAc(3NH(2))A in a coupled reaction via a unique NAD(+) recycling pathway. In addition, we confirm that WbpD catalyzes the acetylation of UDP-GlcNAc(3NH(2))A to give UDP-GlcNAc(3NAc)A. Notably, WbpA, WbpB, WbpE, WbpD, and WbpI can be combined in vitro to generate UDP-ManNAc(3NAc)A in a single reaction vessel, thereby providing supplies of this complex glycosyl donor for future studies of lipopolysaccharide assembly. This work completes the biochemical characterization of the enzymes in this pathway and provides novel targets for potential therapeutics to combat infections with drug resistant P. aeruginosa strains.
在机会致病菌铜绿假单胞菌PAO1(血清型O5)中发现的脂多糖的B带O抗原由一个重复的三糖单元组成,该单元对毒力和抵御宿主防御系统至关重要。这个重复单元中的一种碳水化合物,即罕见的二乙酰化氨基糖醛酸衍生物2,3 - 二乙酰氨基 - 2,3 - 二脱氧 -β-D-甘露糖醛酸(ManNAc(3NAc)A),被认为是由五种酶(WbpA、WbpB、WbpE、WbpD和WbpI)从UDP-GlcNAc开始逐步产生的。尽管负责这种糖生物合成的基因是已知的,但五个编码蛋白中只有两个(WbpA和WbpI)得到了深入研究。在本报告中,我们描述了该途径中三种核心酶WbpB、WbpE和WbpD的克隆、过表达、纯化及生化特性。通过结合毛细管电泳、反相高效液相色谱和核磁共振光谱,我们表明WbpB和WbpE是一对脱氢酶/转氨酶,它们通过独特的NAD(+)循环途径在偶联反应中将UDP-GlcNAcA转化为UDP-GlcNAc(3NH(2))A。此外,我们证实WbpD催化UDP-GlcNAc(3NH(2))A的乙酰化反应生成UDP-GlcNAc(3NAc)A。值得注意的是,WbpA、WbpB、WbpE、WbpD和WbpI可以在体外组合,在单个反应容器中生成UDP-ManNAc(3NAc)A,从而为未来脂多糖组装研究提供这种复杂糖基供体。这项工作完成了该途径中酶的生化特性描述,并为对抗耐药性铜绿假单胞菌菌株感染的潜在治疗方法提供了新的靶点。