Suppr超能文献

高时间分辨率电子顺磁共振的收获:来自光合细菌的实例。

What you get out of high-time resolution electron paramagnetic resonance: example from photosynthetic bacteria.

机构信息

Department of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.

出版信息

Photosynth Res. 2009 Nov-Dec;102(2-3):349-65. doi: 10.1007/s11120-009-9419-1.

Abstract

The primary energy conversion steps of natural photosynthesis proceed via light-induced radical ion pairs as short-lived intermediates. Time-resolved electron paramagnetic resonance (EPR) experiments of photosynthetic reaction centers monitor the key charge separated state between the oxidized primary electron donor and reduced quinone acceptor, e.g., P(+)(865)Q(-)(A) of purple photosynthetic bacteria. The time-resolved EPR spectra of P(+)(865)Q(-)(A) are indicative of a spin-correlated radical pair that is created from the excited singlet state of P(865) in an ultra-fast photochemical reaction. Importantly, the spin-correlated radical pair nature of the charge separated state is a common feature of all photosynthetic reaction centers, which gives rise to several interesting spin phenomena such as quantum oscillations, observed at short delay times after optical excitation. In this review, we describe details of the quantum oscillation phenomenon and present a complete analysis of the data obtained from the charge separated state of purple bacteria, P(+)(865)Q(-)(A). The analysis and simulation of the quantum oscillations yield the three-dimensional structure of P(+)(865)Q(-)(A) in the photosynthetic membrane on a nanosecond time scale after light-induced charge separation. Comparison with crystallographic data reveals that the position of Q(-)(A) is essentially the same as in the X-ray structure. However, the head group of Q(-)(A) has undergone a 60° rotation in the ring plane relative to its orientation in the crystal structure. The results are discussed within the framework of the previously suggested conformational gating mechanism for electron transfer from Q(-)(A) to the secondary quinone acceptor Q(B).

摘要

自然光合作用的主要能量转换步骤是通过光诱导的自由基离子对作为短暂中间体进行的。光合作用反应中心的时间分辨电子顺磁共振(EPR)实验监测氧化的初始电子供体和还原的醌受体之间的关键电荷分离状态,例如紫色光合细菌中的 P(+)(865)Q(-)(A)。P(+)(865)Q(-)(A)的时间分辨 EPR 谱表明,电荷分离状态是由 P(865)的激发单重态在超快光化学反应中产生的自旋相关自由基对。重要的是,电荷分离状态的自旋相关自由基对性质是所有光合作用反应中心的共同特征,这导致了几个有趣的自旋现象,例如量子振荡,在光激发后短延迟时间观察到。在这篇综述中,我们描述了量子振荡现象的细节,并对从紫色细菌 P(+)(865)Q(-)(A)的电荷分离状态获得的数据进行了完整分析。量子振荡的分析和模拟在光诱导电荷分离后纳秒时间尺度上提供了光合作用膜中 P(+)(865)Q(-)(A)的三维结构。与晶体学数据的比较表明,Q(-)(A)的位置基本上与 X 射线结构中的位置相同。然而,Q(-)(A)的头基相对于其在晶体结构中的取向在环平面内发生了 60°的旋转。结果在先前提出的从 Q(-)(A)到次级醌受体 Q(B)的电子转移构象门控机制的框架内进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验