Suppr超能文献

大鼠脑中T1和T2弛豫率(ΔR1和ΔR2)的时间变化与元素锰的组织清除率一致。

Temporal changes in the T1 and T2 relaxation rates (DeltaR1 and DeltaR2) in the rat brain are consistent with the tissue-clearance rates of elemental manganese.

作者信息

Chuang Kai-Hsiang, Koretsky Alan P, Sotak Christopher H

机构信息

Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Magn Reson Med. 2009 Jun;61(6):1528-32. doi: 10.1002/mrm.21962.

Abstract

Temporal changes in the T(1) and T(2) relaxation rates (DeltaR(1) and DeltaR(2)) in rat olfactory bulb (OB) and cortex were compared with the absolute manganese (Mn) concentrations from the corresponding excised tissue samples. In vivo T(1) and T(2) relaxation times were measured before, and at 1, 7, 28, and 35 d after intravenous infusion of 176 mg/kg MnCl(2). The values of DeltaR(1), DeltaR(2), and absolute Mn concentration peaked at day 1 and then declined to near control levels after 28 to 35 d. The Mn bioelimination rate from the rat brain was significantly faster than that reported using radioisotope techniques. The R(1) and R(2) relaxation rates were linearly proportional to the underlying tissue Mn concentration and reflect the total absolute amount of Mn present in the tissue. The in vivo Mn r(1) and r(2) tissue relaxivities were comparable to the in vitro values for aqueous Mn(2+). These results demonstrate that loss of manganese-enhanced MRI (MEMRI) contrast after systemic Mn(2+) administration is due to elimination of Mn(2+) from the brain.

摘要

将大鼠嗅球(OB)和皮质中T(1)和T(2)弛豫率(ΔR(1)和ΔR(2))的时间变化与相应切除组织样本中的绝对锰(Mn)浓度进行了比较。在静脉注射176 mg/kg MnCl(2)之前以及之后的1、7、28和35天测量体内T(1)和T(2)弛豫时间。ΔR(1)、ΔR(2)和绝对Mn浓度的值在第1天达到峰值,然后在28至35天后降至接近对照水平。大鼠脑中Mn的生物消除率明显快于使用放射性同位素技术报道的速率。R(1)和R(2)弛豫率与基础组织Mn浓度呈线性比例,并反映组织中存在的Mn的总绝对量。体内Mn的r(1)和r(2)组织弛豫率与体外Mn(2+)水溶液的值相当。这些结果表明,全身给予Mn(2+)后锰增强磁共振成像(MEMRI)对比度的丧失是由于Mn(2+)从脑中消除所致。

相似文献

7
Transcranial manganese delivery for neuronal tract tracing using MEMRI.
Neuroimage. 2017 Aug 1;156:146-154. doi: 10.1016/j.neuroimage.2017.05.025. Epub 2017 May 13.
8
Infusion-based manganese-enhanced MRI: a new imaging technique to visualize the mouse brain.
Brain Struct Funct. 2012 Jan;217(1):107-14. doi: 10.1007/s00429-011-0324-y. Epub 2011 May 20.
9
Quantitative activity-induced manganese-dependent MRI for characterizing cortical layers in the primary somatosensory cortex of the rat.
Brain Struct Funct. 2016 Mar;221(2):695-707. doi: 10.1007/s00429-014-0933-3. Epub 2014 Nov 1.
10
Direct CSF injection of MnCl(2) for dynamic manganese-enhanced MRI.
Magn Reson Med. 2004 May;51(5):978-87. doi: 10.1002/mrm.20047.

引用本文的文献

2
Genetic control of MRI contrast using the manganese transporter Zip14.
Magn Reson Med. 2024 Aug;92(2):820-835. doi: 10.1002/mrm.29993. Epub 2024 Apr 4.
3
In vivo MRI evaluation of anterograde manganese transport along the visual pathway following whole eye transplantation.
J Neurosci Methods. 2022 Apr 15;372:109534. doi: 10.1016/j.jneumeth.2022.109534. Epub 2022 Feb 22.
4
Chronic Intestinal Inflammation Suppresses Brain Activity by Inducing Neuroinflammation in Mice.
Am J Pathol. 2022 Jan;192(1):72-86. doi: 10.1016/j.ajpath.2021.09.006. Epub 2021 Oct 5.
5
Applications of Manganese-Enhanced Magnetic Resonance Imaging in Ophthalmology and Visual Neuroscience.
Front Neural Circuits. 2019 May 14;13:35. doi: 10.3389/fncir.2019.00035. eCollection 2019.
8
Tinnitus and temporary hearing loss result in differential noise-induced spatial reorganization of brain activity.
Brain Struct Funct. 2018 Jun;223(5):2343-2360. doi: 10.1007/s00429-018-1635-z. Epub 2018 Feb 27.
10
Thalamic GABA levels and occupational manganese neurotoxicity: Association with exposure levels and brain MRI.
Neurotoxicology. 2018 Jan;64:30-42. doi: 10.1016/j.neuro.2017.08.013. Epub 2017 Sep 2.

本文引用的文献

1
Manganese cell labeling of murine hepatocytes using manganese(III)-transferrin.
Contrast Media Mol Imaging. 2008 May-Jun;3(3):95-105. doi: 10.1002/cmmi.235.
2
Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI.
Brain Res. 2008 Mar 10;1198:160-70. doi: 10.1016/j.brainres.2007.12.065. Epub 2008 Jan 4.
5
Intracellular manganese ions provide strong T1 relaxation in rat myocardium.
Magn Reson Med. 2004 Sep;52(3):506-14. doi: 10.1002/mrm.20199.
6
In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI.
Neuroimage. 2004 Jul;22(3):1046-59. doi: 10.1016/j.neuroimage.2004.03.031.
7
Direct CSF injection of MnCl(2) for dynamic manganese-enhanced MRI.
Magn Reson Med. 2004 May;51(5):978-87. doi: 10.1002/mrm.20047.
9
Manganese neurotoxicity: an update of pathophysiologic mechanisms.
Metab Brain Dis. 2002 Dec;17(4):375-87. doi: 10.1023/a:1021970120965.
10
Manganese action in brain function.
Brain Res Brain Res Rev. 2003 Jan;41(1):79-87. doi: 10.1016/s0165-0173(02)00234-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验