Brigham & Women's Hospital, Boston, MA 02120, USA.
J Clin Epidemiol. 2009 Dec;62(12):1226-32. doi: 10.1016/j.jclinepi.2008.12.005. Epub 2009 Apr 8.
The gold standard of study design for treatment evaluation is widely acknowledged to be the randomized controlled trial (RCT). Trials allow for the estimation of causal effect by randomly assigning participants either to an intervention or comparison group; through the assumption of "exchangeability" between groups, comparing the outcomes will yield an estimate of causal effect. In the many cases where RCTs are impractical or unethical, instrumental variable (IV) analysis offers a nonexperimental alternative based on many of the same principles. IV analysis relies on finding a naturally varying phenomenon, related to treatment but not to outcome except through the effect of treatment itself, and then using this phenomenon as a proxy for the confounded treatment variable. This article demonstrates how IV analysis arises from an analogous but potentially impossible RCT design, and outlines the assumptions necessary for valid estimation. It gives examples of instruments used in clinical epidemiology and concludes with an outline on estimation of effects.
治疗评估的研究设计金标准被广泛认为是随机对照试验(RCT)。试验通过将参与者随机分配到干预组或对照组,从而可以估计因果效应;通过假设组间“可交换性”,比较结果将得出因果效应的估计值。在许多情况下,RCT 不切实际或不道德,工具变量(IV)分析提供了一种基于许多相同原则的非实验替代方法。IV 分析依赖于找到一种自然变化的现象,它与治疗有关,但与结果无关,除非通过治疗本身的影响,然后使用这种现象作为混杂治疗变量的替代。本文展示了 IV 分析如何从类似但可能不可能的 RCT 设计中产生,并概述了有效估计所需的假设。它给出了临床流行病学中使用的工具的示例,并以效果估计的概述结束。