Suppr超能文献

NAGNAG可变剪接的准确预测。

Accurate prediction of NAGNAG alternative splicing.

作者信息

Sinha Rileen, Nikolajewa Swetlana, Szafranski Karol, Hiller Michael, Jahn Niels, Huse Klaus, Platzer Matthias, Backofen Rolf

机构信息

Leibniz Institute for Age Research - Fritz Lipmann Institute, Genome Analysis, Beutenbergstrasse 11, 07745 Jena, Germany.

出版信息

Nucleic Acids Res. 2009 Jun;37(11):3569-79. doi: 10.1093/nar/gkp220. Epub 2009 Apr 9.

Abstract

Alternative splicing (AS) involving NAGNAG tandem acceptors is an evolutionarily widespread class of AS. Recent predictions of alternative acceptor usage reported better results for acceptors separated by larger distances, than for NAGNAGs. To improve the latter, we aimed at the use of Bayesian networks (BN), and extensive experimental validation of the predictions. Using carefully constructed training and test datasets, a balanced sensitivity and specificity of >or=92% was achieved. A BN trained on the combined dataset was then used to make predictions, and 81% (38/47) of the experimentally tested predictions were verified. Using a BN learned on human data on six other genomes, we show that while the performance for the vertebrate genomes matches that achieved on human data, there is a slight drop for Drosophila and worm. Lastly, using the prediction accuracy according to experimental validation, we estimate the number of yet undiscovered alternative NAGNAGs. State of the art classifiers can produce highly accurate prediction of AS at NAGNAGs, indicating that we have identified the major features of the 'NAGNAG-splicing code' within the splice site and its immediate neighborhood. Our results suggest that the mechanism behind NAGNAG AS is simple, stochastic, and conserved among vertebrates and beyond.

摘要

涉及NAGNAG串联受体的可变剪接(AS)是一种在进化上广泛存在的AS类型。最近关于可变受体使用情况的预测表明,距离较远的受体的预测结果优于NAGNAG受体。为了改进后者,我们旨在使用贝叶斯网络(BN),并对预测结果进行广泛的实验验证。使用精心构建的训练和测试数据集,实现了大于或等于92%的平衡敏感性和特异性。然后使用在组合数据集上训练的BN进行预测,经实验测试的预测中有81%(38/47)得到了验证。使用在人类数据上学习到的BN对其他六个基因组进行分析,我们发现虽然脊椎动物基因组的性能与在人类数据上实现的性能相匹配,但果蝇和线虫的数据性能略有下降。最后,根据实验验证的预测准确性,我们估计了尚未发现的可变NAGNAG的数量。目前最先进的分类器可以对NAGNAG处的AS进行高度准确的预测,这表明我们已经确定了剪接位点及其紧邻区域内“NAGNAG剪接密码”的主要特征。我们的结果表明,NAGNAG AS背后的机制简单、随机,并且在脊椎动物及其他物种中保守。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90d2/2699507/c83e7525ad74/gkp220f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验