Suppr超能文献

多肽与聚乳酸表面吸附相互作用的建模

Modeling of peptide adsorption interactions with a poly(lactic acid) surface.

作者信息

O'Brien C P, Stuart S J, Bruce D A, Latour R A

机构信息

Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA.

出版信息

Langmuir. 2008 Dec 16;24(24):14115-24. doi: 10.1021/la802588n.

Abstract

The biocompatibility of implanted materials and devices is governed by the conformation, orientation, and composition of the layer of proteins that adsorb to the surface of the material immediately upon implantation, so an understanding of this adsorbed protein layer is essential to the rigorous and methodical design of implant materials. In this study, novel molecular dynamics techniques were employed in order to determine the change in free energy for the adsorption of a solvated nine-residue peptide (GGGG-K-GGGG) to a crystalline polylactide surface in an effort to elucidate the fundamental mechanisms that govern protein adsorption. This system, like many others, involves two distinct types of sampling problems: a spatial sampling problem, which arises due to entropic effects creating barriers in the free energy profile, and a conformational sampling problem, which occurs due to barriers in the potential energy landscape. In a two-step process that addresses each sampling problem in turn, the technique of biased replica exchange molecular dynamics was refined and applied in order to overcome these sampling problems and, using the information available at the atomic level of detail afforded by molecular simulation, both quantify and characterize the interactions between the peptide and a relevant biomaterial surface. The results from these simulations predict a fairly strong adsorption response with an adsorption free energy of -2.5 +/- 0.6 kcal/mol (mean +/- 95% confidence interval), with adsorption primarily due to hydrophobic interactions between the nonpolar groups of the peptide and the PLA surface. As part of a larger and ongoing effort involving both simulation and experimental investigations, this work contributes to the goal of transforming the engineering of biomaterials from one dominated by trial-and-error to one which is guided by an atomic-level understanding of the interactions that occur at the tissue-biomaterial interface.

摘要

植入材料和装置的生物相容性取决于植入后立即吸附在材料表面的蛋白质层的构象、取向和组成,因此了解这种吸附的蛋白质层对于植入材料的严谨和系统设计至关重要。在本研究中,采用了新颖的分子动力学技术来确定溶剂化的九残基肽(GGGG-K-GGGG)吸附到结晶聚乳酸表面时自由能的变化,以阐明控制蛋白质吸附的基本机制。与许多其他系统一样,该系统涉及两种不同类型的采样问题:一种是空间采样问题,它是由于熵效应在自由能分布中产生障碍而出现的;另一种是构象采样问题,它是由于势能景观中的障碍而发生的。在一个依次解决每个采样问题的两步过程中,对有偏复制交换分子动力学技术进行了改进和应用,以克服这些采样问题,并利用分子模拟在原子水平细节上提供的可用信息,量化和表征肽与相关生物材料表面之间的相互作用。这些模拟结果预测了相当强的吸附响应,吸附自由能为-2.5±0.6 kcal/mol(平均值±95%置信区间),吸附主要是由于肽的非极性基团与PLA表面之间的疏水相互作用。作为一项涉及模拟和实验研究的更大规模且仍在进行的工作的一部分,这项工作有助于实现将生物材料工程从一个以试错为主导的领域转变为一个以对组织-生物材料界面发生的相互作用的原子水平理解为指导的领域这一目标。

相似文献

1
Modeling of peptide adsorption interactions with a poly(lactic acid) surface.
Langmuir. 2008 Dec 16;24(24):14115-24. doi: 10.1021/la802588n.
2
Molecular dynamics simulations of peptide-surface interactions.
Langmuir. 2005 Feb 15;21(4):1629-39. doi: 10.1021/la047807f.
3
Stable modification of poly(lactic acid) surface with neurite outgrowth-promoting peptides via hydrophobic collagen-like sequence.
Acta Biomater. 2010 Jun;6(6):1925-30. doi: 10.1016/j.actbio.2009.12.001. Epub 2009 Dec 5.
5
Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface.
Soft Matter. 2015 Jul 14;11(26):5192-203. doi: 10.1039/c5sm00123d. Epub 2015 Apr 29.
6
A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres.
J Biomater Appl. 2015 Aug;30(2):147-59. doi: 10.1177/0885328215577297. Epub 2015 Mar 18.
7
Energy Landscape Mapping and Replica Exchange Molecular Dynamics of an Adsorbed Peptide.
J Phys Chem B. 2020 Apr 2;124(13):2527-2538. doi: 10.1021/acs.jpcb.9b10568. Epub 2020 Mar 19.
8
Effect of disperse dye structure on dye sorption onto PLA fiber.
J Colloid Interface Sci. 2007 Jun 1;310(1):106-11. doi: 10.1016/j.jcis.2007.01.037. Epub 2007 Mar 7.
10
Exhaustively sampling peptide adsorption with metadynamics.
Langmuir. 2013 Jun 25;29(25):7999-8009. doi: 10.1021/la4010664. Epub 2013 Jun 13.

引用本文的文献

1
Integrating biophysical modeling, quantum computing, and AI to discover plastic-binding peptides that combat microplastic pollution.
PNAS Nexus. 2025 Jan 21;4(1):pgae572. doi: 10.1093/pnasnexus/pgae572. eCollection 2025 Jan.
2
Globular Proteins and Where to Find Them within a Polymer Brush-A Case Study.
Polymers (Basel). 2023 May 22;15(10):2407. doi: 10.3390/polym15102407.
3
Gamma estimator of Jarzynski equality for recovering binding energies from noisy dynamic data sets.
Nat Commun. 2020 Nov 2;11(1):5517. doi: 10.1038/s41467-020-19233-7.
4
An Evaluation of the Red Cell Damage and Hemocompatibility of Different Central Venous Catheters.
Biomed Res Int. 2020 Apr 14;2020:8750150. doi: 10.1155/2020/8750150. eCollection 2020.
6
Advances in surfaces and osseointegration in implantology. Biomimetic surfaces.
Med Oral Patol Oral Cir Bucal. 2015 May 1;20(3):e316-25. doi: 10.4317/medoral.20353.
7
Perspectives on the simulation of protein-surface interactions using empirical force field methods.
Colloids Surf B Biointerfaces. 2014 Dec 1;124:25-37. doi: 10.1016/j.colsurfb.2014.06.050. Epub 2014 Jun 30.
8
Development of a tuned interfacial force field parameter set for the simulation of protein adsorption to silica glass.
Biointerphases. 2012 Dec;7(1-4):56. doi: 10.1007/s13758-012-0056-4. Epub 2012 Sep 1.
9
Simulation of multiphase systems utilizing independent force fields to control intraphase and interphase behavior.
J Comput Chem. 2012 Jun 15;33(16):1458-66. doi: 10.1002/jcc.22979. Epub 2012 Apr 4.
10
Protein adsorption in three dimensions.
Biomaterials. 2012 Feb;33(5):1201-37. doi: 10.1016/j.biomaterials.2011.10.059. Epub 2011 Nov 14.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Continuum electrostatics for electronic structure calculations in bulk amorphous polymers: application to polylactide.
J Phys Chem A. 2008 Aug 7;112(31):7244-9. doi: 10.1021/jp712114q. Epub 2008 Jul 16.
4
Determination of the adsorption free energy for peptide-surface interactions by SPR spectroscopy.
Langmuir. 2008 Jun 1;24(13):6721-9. doi: 10.1021/la8005772. Epub 2008 May 29.
5
Interpretation of protein adsorption: surface-induced conformational changes.
J Am Chem Soc. 2005 Jun 8;127(22):8168-73. doi: 10.1021/ja042898o.
6
Molecular dynamics simulations of peptide-surface interactions.
Langmuir. 2005 Feb 15;21(4):1629-39. doi: 10.1021/la047807f.
7
Optimal allocation of replicas in parallel tempering simulations.
J Chem Phys. 2005 Jan 8;122(2):024111. doi: 10.1063/1.1831273.
8
Time-dependent conformational changes in fibrinogen measured by atomic force microscopy.
Langmuir. 2004 Sep 28;20(20):8846-52. doi: 10.1021/la049239+.
10
MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology.
J Mol Graph Model. 2004 May;22(5):377-95. doi: 10.1016/j.jmgm.2003.12.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验