Wei Yang, Latour Robert A
Department of Bioengineering, 501 Rhodes Engineering Research Center, Clemson University, Clemson, SC 29634, USA.
Langmuir. 2008 Jun 1;24(13):6721-9. doi: 10.1021/la8005772. Epub 2008 May 29.
To understand and predict protein adsorption behavior, we must first understand the fundamental interactions between the functional groups presented by the amino acid residues making up a protein and the functional groups presented by the surface. Limited quantitative information is available, however, on these types of submolecular interactions. The objective of this study was therefore to develop a reliable method to determine the standard state adsorption free energy (delta Go ads) of amino acid residue-surface interactions using surface plasma resonance (SPR) spectroscopy. Two problems are commonly encountered when using SPR for peptide adsorption studies: the need to account for "bulk-shift" effects and the influence of peptide-peptide interactions at the surface. Bulk-shift effects represent the contribution of the bulk solute concentration to the SPR response that occurs in addition to the response due to adsorption. Peptide-peptide interactions, which are assumed to be zero for Langmuir adsorption, can greatly skew the isotherm shape and result in erroneous calculated values of delta Go ads. To address these issues, we have developed a new approach for the determination of delta Go ads using SPR that is based on the chemical potential. In this article, we present the development of this new approach and its application for the calculation of delta Go ads for a set of peptide-surface systems where the peptide has a host-guest amino acid sequence of TGTG-X-GTGT (where G and T are glycine and threonine residues and X represents a variable residue) and the surface consists of alkanethiol self-assembled monolayers (SAMs) with methyl (CH 3) and hydroxyl (OH) functionality. This new approach enables bulk-shift effects to be directly determined from the raw SPR versus peptide concentration data plots and the influence of peptide-peptide interaction effects to be minimized, thus providing a very straightforward and accurate method for the determination of delta Go ads for peptide adsorption. Further studies are underway to characterize delta Go ads for a large library of peptide-SAM combinations.
为了理解和预测蛋白质吸附行为,我们首先必须了解构成蛋白质的氨基酸残基所呈现的官能团与表面所呈现的官能团之间的基本相互作用。然而,关于这类亚分子相互作用的定量信息有限。因此,本研究的目的是开发一种可靠的方法,使用表面等离子体共振(SPR)光谱来测定氨基酸残基与表面相互作用的标准状态吸附自由能(ΔGₒ ads)。在使用SPR进行肽吸附研究时,通常会遇到两个问题:需要考虑“本体位移”效应以及表面肽 - 肽相互作用的影响。本体位移效应是指本体溶质浓度对SPR响应的贡献,它是除吸附引起的响应之外发生的。对于朗缪尔吸附,肽 - 肽相互作用被假定为零,但它会极大地扭曲等温线形状,并导致ΔGₒ ads的计算值出现错误。为了解决这些问题,我们开发了一种基于化学势的使用SPR测定ΔGₒ ads的新方法。在本文中,我们介绍了这种新方法的开发及其在计算一组肽 - 表面系统的ΔGₒ ads中的应用,其中肽具有TGTG - X - GTGT的主 - 客体氨基酸序列(其中G和T分别是甘氨酸和苏氨酸残基,X代表可变残基),表面由具有甲基(CH₃)和羟基(OH)官能团的烷硫醇自组装单分子层(SAMs)组成。这种新方法能够直接从原始的SPR与肽浓度数据图中确定本体位移效应,并将肽 - 肽相互作用效应的影响降至最低,从而为测定肽吸附的ΔGₒ ads提供了一种非常直接和准确的方法。正在进行进一步的研究,以表征大量肽 - SAM组合的ΔGₒ ads。