Suppr超能文献

一种用于网络图像检索的统一相关反馈框架。

A unified relevance feedback framework for web image retrieval.

作者信息

Cheng En, Jing Feng, Zhang Lei

机构信息

Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106-7071, USA.

出版信息

IEEE Trans Image Process. 2009 Jun;18(6):1350-7. doi: 10.1109/TIP.2009.2017128. Epub 2009 Apr 7.

Abstract

Although relevance feedback (RF) has been extensively studied in the content-based image retrieval community, no commercial Web image search engines support RF because of scalability, efficiency, and effectiveness issues. In this paper, we propose a unified relevance feedback framework for Web image retrieval. Our framework shows advantage over traditional RF mechanisms in the following three aspects. First, during the RF process, both textual feature and visual feature are used in a sequential way. To seamlessly combine textual feature-based RF and visual feature-based RF, a query concept-dependent fusion strategy is automatically learned. Second, the textual feature-based RF mechanism employs an effective search result clustering (SRC) algorithm to obtain salient phrases, based on which we could construct an accurate and low-dimensional textual space for the resulting Web images. Thus, we could integrate RF into Web image retrieval in a practical way. Last, a new user interface (UI) is proposed to support implicit RF. On the one hand, unlike traditional RF UI which enforces users to make explicit judgment on the results, the new UI regards the users' click-through data as implicit relevance feedback in order to release burden from the users. On the other hand, unlike traditional RF UI which hardily substitutes subsequent results for previous ones, a recommendation scheme is used to help the users better understand the feedback process and to mitigate the possible waiting caused by RF. Experimental results on a database consisting of nearly three million Web images show that the proposed framework is wieldy, scalable, and effective.

摘要

尽管相关反馈(RF)在基于内容的图像检索领域已得到广泛研究,但由于可扩展性、效率和有效性问题,尚无商业网络图像搜索引擎支持相关反馈。在本文中,我们提出了一种用于网络图像检索的统一相关反馈框架。我们的框架在以下三个方面优于传统的相关反馈机制。首先,在相关反馈过程中,文本特征和视觉特征以顺序方式使用。为了无缝结合基于文本特征的相关反馈和基于视觉特征的相关反馈,自动学习了一种查询概念相关的融合策略。其次,基于文本特征的相关反馈机制采用有效的搜索结果聚类(SRC)算法来获取显著短语,基于此我们可以为所得的网络图像构建一个准确且低维的文本空间。因此,我们可以以一种实用的方式将相关反馈集成到网络图像检索中。最后,提出了一种新的用户界面(UI)以支持隐式相关反馈。一方面,与强制用户对结果进行明确判断的传统相关反馈用户界面不同,新的用户界面将用户的点击数据视为隐式相关反馈,以便减轻用户负担。另一方面,与几乎不将后续结果替换先前结果的传统相关反馈用户界面不同,使用了一种推荐方案来帮助用户更好地理解反馈过程,并减轻由相关反馈可能导致的等待。在一个由近三百万张网络图像组成的数据库上的实验结果表明,所提出的框架实用、可扩展且有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验