Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Med Phys. 2010 Aug;37(8):4432-44. doi: 10.1118/1.3460839.
With the rapid growing volume of images in medical databases, development of efficient image retrieval systems to retrieve relevant or similar images to a query image has become an active research area. Despite many efforts to improve the performance of techniques for accurate image retrieval, its success in biomedicine thus far has been quite limited. This article presents an adaptive content-based image retrieval (CBIR) system for improving the performance of image retrieval in mammographic databases.
In this work, the authors propose a new relevance feedback approach based on incremental learning with support vector machine (SVM) regression. Also, the authors present a new local perturbation method to further improve the performance of the proposed relevance feedback system. The approaches enable efficient online learning by adapting the current trained model to changes prompted by the user's relevance feedback, avoiding the burden of retraining the CBIR system. To demonstrate the proposed image retrieval system, the authors used two mammogram data sets: A set of 76 mammograms scored based on geometrical similarity and a larger set of 200 mammograms scored by expert radiologists based on pathological findings.
The experimental results show that the proposed relevance feedback strategy improves the retrieval precision for both data sets while achieving high efficiency compared to offline SVM. For the data set of 200 mammograms, the authors obtained an average precision of 0.48 and an area under the precision-recall curve of 0.79. In addition, using the same database, the authors achieved a high pathology matching rate greater than 80% between the query and the top retrieved images after relevance feedback.
Using mammographic databases, the results demonstrate that the proposed approach is more accurate than the model without using relevance feedback not only in image retrieval but also in pathology matching while maintaining its effectiveness for online relevance feedback applications.
随着医学数据库中图像数量的快速增长,开发高效的图像检索系统以检索与查询图像相关或相似的图像已成为一个活跃的研究领域。尽管为提高准确图像检索技术的性能做出了许多努力,但迄今为止,其在生物医学中的应用效果相当有限。本文提出了一种自适应基于内容的图像检索(CBIR)系统,以提高乳腺图像数据库中图像检索的性能。
在这项工作中,作者提出了一种新的基于支持向量机(SVM)回归的增量学习的相关反馈方法。此外,作者还提出了一种新的局部扰动方法,以进一步提高所提出的相关反馈系统的性能。这些方法通过自适应地调整当前训练模型以适应用户相关反馈所提示的变化,从而实现有效的在线学习,避免了重新训练 CBIR 系统的负担。为了演示所提出的图像检索系统,作者使用了两个乳腺图像数据集:一组基于几何相似性评分的 76 张乳腺图像和一组由专家放射科医生基于病理发现评分的 200 张乳腺图像。
实验结果表明,与离线 SVM 相比,所提出的相关反馈策略提高了两个数据集的检索精度,同时具有高效率。对于 200 张乳腺图像数据集,作者获得了平均精度为 0.48,精度-召回曲线下的面积为 0.79。此外,使用相同的数据库,作者在相关反馈后获得了 80%以上的查询和检索到的图像之间的高病理学匹配率。
使用乳腺图像数据库,结果表明,与不使用相关反馈的模型相比,该方法不仅在图像检索方面更准确,而且在病理学匹配方面也更准确,同时保持了其在线相关反馈应用的有效性。