Suppr超能文献

在高pH值下的生长以及在高于细胞质pH值的培养基中的钠和钾耐受性取决于玉米黑粉菌中的ENA ATP酶。

Growth at high pH and sodium and potassium tolerance in media above the cytoplasmic pH depend on ENA ATPases in Ustilago maydis.

作者信息

Benito Begoña, Garciadeblás Blanca, Pérez-Martín José, Rodríguez-Navarro Alonso

机构信息

Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

出版信息

Eukaryot Cell. 2009 Jun;8(6):821-9. doi: 10.1128/EC.00252-08. Epub 2009 Apr 10.

Abstract

Potassium and Na(+) effluxes across the plasma membrane are crucial processes for the ionic homeostasis of cells. In fungal cells, these effluxes are mediated by cation/H(+) antiporters and ENA ATPases. We have cloned and studied the functions of the two ENA ATPases of Ustilago maydis, U. maydis Ena1 (UmEna1) and UmEna2. UmEna1 is a typical K(+) or Na(+) efflux ATPase whose function is indispensable for growth at pH 9.0 and for even modest Na(+) or K(+) tolerances above pH 8.0. UmEna1 locates to the plasma membrane and has the characteristics of the low-Na(+)/K(+)-discrimination ENA ATPases. However, it still protects U. maydis cells in high-Na(+) media because Na(+) showed a low cytoplasmic toxicity. The UmEna2 ATPase is phylogenetically distant from UmEna1 and is located mainly at the endoplasmic reticulum. The function of UmEna2 is not clear, but we found that it shares several similarities with Neurospora crassa ENA2, which suggests that endomembrane ENA ATPases may exist in many fungi. The expression of ena1 and ena2 transcripts in U. maydis was enhanced at high pH and at high K(+) and Na(+) concentrations. We discuss that there are two modes of Na(+) tolerance in fungi: the high-Na(+)-content mode, involving ENA ATPases with low Na(+)/K(+) discrimination, as described here for U. maydis, and the low-Na(+)-content mode, involving Na(+)-specific ENA ATPases, as in Neurospora crassa.

摘要

钾离子和钠离子跨质膜外流是细胞离子稳态的关键过程。在真菌细胞中,这些外流由阳离子/氢离子反向转运蛋白和ENA ATP酶介导。我们克隆并研究了玉米黑粉菌的两种ENA ATP酶U. maydis Ena1(UmEna1)和UmEna2的功能。UmEna1是一种典型的钾离子或钠离子外流ATP酶,其功能对于在pH 9.0时的生长以及在pH 8.0以上对适度的钠离子或钾离子耐受性而言不可或缺。UmEna1定位于质膜,具有低钠/钾区分的ENA ATP酶的特征。然而,它仍能在高钠培养基中保护玉米黑粉菌细胞,因为钠离子显示出较低的细胞质毒性。UmEna2 ATP酶在系统发育上与UmEna1距离较远,主要位于内质网。UmEna2的功能尚不清楚,但我们发现它与粗糙脉孢菌的ENA2有几个相似之处,这表明内膜ENA ATP酶可能存在于许多真菌中。在玉米黑粉菌中,ena1和ena2转录本的表达在高pH以及高钾和高钠浓度下增强。我们讨论了真菌中存在两种耐钠模式:高钠含量模式,涉及如本文所述的玉米黑粉菌中具有低钠/钾区分的ENA ATP酶;以及低钠含量模式,涉及如粗糙脉孢菌中钠特异性的ENA ATP酶。

相似文献

2
P-type ATPases mediate sodium and potassium effluxes in Schwanniomyces occidentalis.
J Biol Chem. 1998 Jan 16;273(3):1640-6. doi: 10.1074/jbc.273.3.1640.
3
Novel p-type ATPases mediate high-affinity potassium or sodium uptake in fungi.
Eukaryot Cell. 2004 Apr;3(2):359-68. doi: 10.1128/EC.3.2.359-368.2004.
4
Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi.
Microbiology (Reading). 2002 Apr;148(Pt 4):933-941. doi: 10.1099/00221287-148-4-933.
5
Sodium or potassium efflux ATPase a fungal, bryophyte, and protozoal ATPase.
Biochim Biophys Acta. 2010 Oct;1798(10):1841-53. doi: 10.1016/j.bbamem.2010.07.009. Epub 2010 Jul 19.
6
The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux.
Microbiology (Reading). 1998 Oct;144 ( Pt 10):2749-2758. doi: 10.1099/00221287-144-10-2749.
7
Role of ENA ATPase in Na(+) efflux at high pH in bryophytes.
Plant Mol Biol. 2009 Dec;71(6):599-608. doi: 10.1007/s11103-009-9543-5. Epub 2009 Sep 12.
8
Identification and characterization of ENA ATPases HwENA1 and HwENA2 from the halophilic black yeast Hortaea werneckii.
FEMS Microbiol Lett. 2006 Dec;265(1):41-50. doi: 10.1111/j.1574-6968.2006.00473.x. Epub 2006 Oct 10.
9
Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae.
Fungal Genet Biol. 2011 Aug;48(8):812-22. doi: 10.1016/j.fgb.2011.03.002. Epub 2011 Mar 22.

引用本文的文献

4
Osmolyte Signatures for the Protection of Cells under Halophilic Conditions and Osmotic Shock.
J Fungi (Basel). 2021 May 26;7(6):414. doi: 10.3390/jof7060414.
5
P-type Na/K ATPases essential and nonessential for cellular homeostasis and insect pathogenicity of .
Virulence. 2020 Dec;11(1):1415-1431. doi: 10.1080/21505594.2020.1836903.
6
Tolerance to alkaline ambient pH in Aspergillus nidulans depends on the activity of ENA proteins.
Sci Rep. 2020 Aug 31;10(1):14325. doi: 10.1038/s41598-020-71297-z.
7
Stress Reshapes the Physiological Response of Halophile Fungi to Salinity.
Cells. 2020 Feb 25;9(3):525. doi: 10.3390/cells9030525.
8
10
Protein Phosphatase Ppz1 Is Not Regulated by a Hal3-Like Protein in Plant Pathogen .
Int J Mol Sci. 2019 Aug 5;20(15):3817. doi: 10.3390/ijms20153817.

本文引用的文献

1
Ustilago maydis: how its biology relates to pathogenic development.
New Phytol. 2004 Oct;164(1):31-42. doi: 10.1111/j.1469-8137.2004.01156.x.
2
Function and regulation of the Saccharomyces cerevisiae ENA sodium ATPase system.
Eukaryot Cell. 2007 Dec;6(12):2175-83. doi: 10.1128/EC.00337-07. Epub 2007 Oct 19.
4
Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.
Nature. 2006 Nov 2;444(7115):97-101. doi: 10.1038/nature05248.
5
Molecular cloning and characterization of ouabain-insensitive Na(+)-ATPase in the parasitic protist, Trypanosoma cruzi.
Biochim Biophys Acta. 2006 Jun;1758(6):738-46. doi: 10.1016/j.bbamem.2006.04.025. Epub 2006 May 16.
6
Potassium/proton antiport system of Escherichia coli.
J Biol Chem. 2006 Jul 21;281(29):19822-9. doi: 10.1074/jbc.M600333200. Epub 2006 May 9.
7
Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis.
Proc Natl Acad Sci U S A. 1989 Aug;86(15):5878-82. doi: 10.1073/pnas.86.15.5878.
8
Alkaline pH homeostasis in bacteria: new insights.
Biochim Biophys Acta. 2005 Nov 30;1717(2):67-88. doi: 10.1016/j.bbamem.2005.09.010. Epub 2005 Sep 26.
10
Sodium, potassium-atpases in algae and oomycetes.
J Bioenerg Biomembr. 2005 Aug;37(4):269-78. doi: 10.1007/s10863-005-6637-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验