Das Aditi, Zhao Jing, Schatz George C, Sligar Stephen G, Van Duyne Richard P
Department of Biochemistry and Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
Anal Chem. 2009 May 15;81(10):3754-9. doi: 10.1021/ac802612z.
A prototype nanoparticle biosensor based on localized surface plasmon resonance (LSPR) spectroscopy was developed to detect drug binding to human membrane-bound cytochrome P450 3A4 (CYP3A4). CYP3A4 is one of the most important enzymes in drug and xenobiotic metabolism in the human body. Because of the inherent propensity of CYP3A4 to aggregate, it is difficult to study drug binding to this protein in solution and on surfaces. In this paper, we use a soluble nanometer scale membrane bilayer disk (Nanodisk) to functionally stabilize monomeric CYP3A4 on Ag nanoparticle surfaces fabricated by nanosphere lithography. CYP3A4-Nanodiscs have absorption bands in the visible wavelength region, which upon binding certain drugs shift to either shorter (type I) or longer wavelengths (type II). On the basis of the coupling between the LSPR of the Ag nanoparticles and the electronic resonances of the heme chromophore in CYP3A4-Nanodiscs, LSPR spectroscopy is used to detect drug binding with high sensitivity. This paper combines LSPR and Nanodisc techniques to optically sense drug binding to a functionally stable membrane protein, with the goal of integrating this with microfluidics and expanding it into a multiarray format, enabling high-throughput screening.
基于局域表面等离子体共振(LSPR)光谱技术开发了一种原型纳米颗粒生物传感器,用于检测药物与人膜结合细胞色素P450 3A4(CYP3A4)的结合。CYP3A4是人体药物和外源性物质代谢中最重要的酶之一。由于CYP3A4具有聚集的固有倾向,因此很难研究溶液中和表面上药物与该蛋白质的结合。在本文中,我们使用可溶性纳米级膜双层盘(纳米盘)在通过纳米球光刻法制备的银纳米颗粒表面上功能稳定单体CYP3A4。CYP3A4-纳米盘在可见波长区域具有吸收带,在结合某些药物后会移至较短波长(I型)或较长波长(II型)。基于银纳米颗粒的LSPR与CYP3A4-纳米盘中血红素发色团的电子共振之间的耦合,LSPR光谱用于高灵敏度地检测药物结合。本文结合了LSPR和纳米盘技术,以光学方式检测药物与功能稳定的膜蛋白的结合,目标是将其与微流体技术集成并扩展为多阵列形式,实现高通量筛选。