Suppr超能文献

激酶结构域的一个对G蛋白偶联受体激酶变构激活至关重要的表面。

A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases.

作者信息

Huang Chih-Chin, Yoshino-Koh Kae, Tesmer John J G

机构信息

From the Life Sciences Institute, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216.

From the Life Sciences Institute, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216.

出版信息

J Biol Chem. 2009 Jun 19;284(25):17206-17215. doi: 10.1074/jbc.M809544200. Epub 2009 Apr 13.

Abstract

G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated GPCRs and initiate their desensitization. Many prior studies suggest that activated GPCRs dock to an allosteric site on the GRKs and thereby stimulate kinase activity. The extreme N-terminal region of GRKs is clearly involved in this process, but its role is not understood. Using our recent structure of bovine GRK1 as a guide, we generated mutants of solvent-exposed residues in the GRK1 kinase domain that are conserved among GRKs but not in the extended protein kinase A, G, and C family and evaluated their catalytic activity. Mutation of select residues in strands beta1 and beta3 of the kinase small lobe, alphaD of the kinase large lobe, and the protein kinase A, G, and C kinase C-tail greatly impaired receptor phosphorylation. The most dramatic effect was observed for mutation of an invariant arginine on the beta1-strand (approximately 1000-fold decrease in k(cat)/K(m)). These residues form a continuous surface that is uniquely available in GRKs for protein-protein interactions. Surprisingly, these mutants, as well as a 19-amino acid N-terminal truncation of GRK1, also show decreased catalytic efficiency for peptide substrates, although to a lesser extent than for receptor phosphorylation. Our data suggest that the N-terminal region and the newly identified surface interact and stabilize the closed, active conformation of the kinase domain. Receptor binding is proposed to promote this interaction, thereby enhancing GRK activity.

摘要

G蛋白偶联受体(GPCR)激酶(GRK)使活化的GPCR磷酸化并启动其脱敏过程。许多先前的研究表明,活化的GPCR与GRK上的变构位点对接,从而刺激激酶活性。GRK的极端N端区域显然参与了这一过程,但其作用尚不清楚。以我们最近获得的牛GRK1结构为指导,我们构建了GRK1激酶结构域中暴露于溶剂的残基的突变体,这些残基在GRK中保守,但在扩展的蛋白激酶A、G和C家族中不保守,并评估了它们的催化活性。激酶小结构域的β1和β3链、激酶大结构域的αD以及蛋白激酶A、G和C激酶C末端的特定残基突变极大地损害了受体磷酸化。β1链上一个不变精氨酸的突变观察到了最显著的影响(催化常数/米氏常数下降约1000倍)。这些残基形成了一个连续的表面,在GRK中可用于蛋白质-蛋白质相互作用,具有独特性。令人惊讶的是,这些突变体以及GRK1的19个氨基酸N端截短体,对肽底物的催化效率也有所降低,尽管程度小于对受体磷酸化的影响。我们的数据表明,N端区域和新鉴定的表面相互作用并稳定激酶结构域的封闭活性构象。受体结合被认为可促进这种相互作用,从而增强GRK活性。

相似文献

1
A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases.
J Biol Chem. 2009 Jun 19;284(25):17206-17215. doi: 10.1074/jbc.M809544200. Epub 2009 Apr 13.
2
Structural domains required for Caenorhabditis elegans G protein-coupled receptor kinase 2 (GRK-2) function in vivo.
J Biol Chem. 2012 Apr 13;287(16):12634-44. doi: 10.1074/jbc.M111.336818. Epub 2012 Feb 28.
4
GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail.
Biochemistry. 2009 May 26;48(20):4285-93. doi: 10.1021/bi900151g.
5
The Open Question of How GPCRs Interact with GPCR Kinases (GRKs).
Biomolecules. 2021 Mar 17;11(3):447. doi: 10.3390/biom11030447.
6
7
Molecular basis for activation of G protein-coupled receptor kinases.
EMBO J. 2010 Oct 6;29(19):3249-59. doi: 10.1038/emboj.2010.206. Epub 2010 Aug 20.
8
Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation.
Biochemistry. 2009 Aug 4;48(30):7325-33. doi: 10.1021/bi900408g.
10
G protein-coupled receptor kinases: more than just kinases and not only for GPCRs.
Pharmacol Ther. 2012 Jan;133(1):40-69. doi: 10.1016/j.pharmthera.2011.08.001. Epub 2011 Aug 26.

引用本文的文献

1
GPCR kinases phosphorylate GPCR C-terminal peptides in a hierarchical manner.
Commun Biol. 2025 Jun 9;8(1):899. doi: 10.1038/s42003-025-08301-7.
2
An unusual tandem kinase fusion protein confers leaf rust resistance in wheat.
Nat Genet. 2023 Jun;55(6):914-920. doi: 10.1038/s41588-023-01401-2. Epub 2023 May 22.
3
G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias.
J Biol Chem. 2022 Sep;298(9):102279. doi: 10.1016/j.jbc.2022.102279. Epub 2022 Jul 19.
4
G protein-coupled receptor signaling: transducers and effectors.
Am J Physiol Cell Physiol. 2022 Sep 1;323(3):C731-C748. doi: 10.1152/ajpcell.00210.2022. Epub 2022 Jul 11.
5
Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1.
Nature. 2021 Jul;595(7868):600-605. doi: 10.1038/s41586-021-03721-x. Epub 2021 Jul 14.
6
The Open Question of How GPCRs Interact with GPCR Kinases (GRKs).
Biomolecules. 2021 Mar 17;11(3):447. doi: 10.3390/biom11030447.
7
Structure of a GRK5-Calmodulin Complex Reveals Molecular Mechanism of GRK Activation and Substrate Targeting.
Mol Cell. 2021 Jan 21;81(2):323-339.e11. doi: 10.1016/j.molcel.2020.11.026. Epub 2020 Dec 14.
8
G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub.
Cell Mol Life Sci. 2019 Nov;76(22):4423-4446. doi: 10.1007/s00018-019-03274-3. Epub 2019 Aug 20.
9
G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases.
Front Pharmacol. 2019 Feb 19;10:112. doi: 10.3389/fphar.2019.00112. eCollection 2019.
10
Dopamine negatively modulates the NCA ion channels in C. elegans.
PLoS Genet. 2017 Oct 2;13(10):e1007032. doi: 10.1371/journal.pgen.1007032. eCollection 2017 Oct.

本文引用的文献

1
GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail.
Biochemistry. 2009 May 26;48(20):4285-93. doi: 10.1021/bi900151g.
2
Dual role of the beta2-adrenergic receptor C terminus for the binding of beta-arrestin and receptor internalization.
J Biol Chem. 2008 Nov 14;283(46):31840-8. doi: 10.1074/jbc.M806086200. Epub 2008 Sep 18.
3
4
Phosphorylation of the beta2-adrenergic receptor in plasma membranes by intrinsic GRK5.
Biochemistry. 2007 Dec 18;46(50):14438-49. doi: 10.1021/bi700922h. Epub 2007 Nov 23.
5
Substrate and docking interactions in serine/threonine protein kinases.
Chem Rev. 2007 Nov;107(11):5065-81. doi: 10.1021/cr068221w. Epub 2007 Oct 19.
7
Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation.
EMBO J. 2007 May 2;26(9):2251-61. doi: 10.1038/sj.emboj.7601682. Epub 2007 Apr 19.
8
The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1272-7. doi: 10.1073/pnas.0610251104. Epub 2007 Jan 16.
9
Lining the pockets of kinases and phosphatases.
Curr Opin Struct Biol. 2006 Dec;16(6):693-701. doi: 10.1016/j.sbi.2006.10.006. Epub 2006 Nov 2.
10
Protein-protein interactions in the allosteric regulation of protein kinases.
Curr Opin Struct Biol. 2006 Dec;16(6):702-9. doi: 10.1016/j.sbi.2006.10.007. Epub 2006 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验