Suppr超能文献

G 蛋白偶联受体激酶 1 的激活涉及其 N 端区域与其激酶结构域之间的相互作用。

Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain.

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, United States.

出版信息

Biochemistry. 2011 Mar 22;50(11):1940-9. doi: 10.1021/bi101606e. Epub 2011 Feb 22.

Abstract

G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors (GPCRs) to initiate receptor desensitization. In addition to the canonical phosphoacceptor site of the kinase domain, activated receptors bind to a distinct docking site that confers higher affinity and activates GRKs allosterically. Recent mutagenesis and structural studies support a model in which receptor docking activates a GRK by stabilizing the interaction of its ∼20-amino acid N-terminal region with the kinase domain. This interaction in turn stabilizes a closed, more active conformation of the enzyme. To investigate the importance of this interaction for the process of GRK activation, we first validated the functionality of the N-terminal region in rhodopsin kinase (GRK1) by site-directed mutagenesis and then introduced a disulfide bond to cross-link the N-terminal region of GRK1 with its specific binding site on the kinase domain. Characterization of the kinetic and biophysical properties of the cross-linked protein showed that disulfide bond formation greatly enhances the catalytic efficiency of the peptide phosphorylation, but receptor-dependent phosphorylation, Meta II stabilization, and inhibition of transducin activation were unaffected. These data indicate that the interaction of the N-terminal region with the kinase domain is important for GRK activation but does not dictate the affinity of GRKs for activated receptors.

摘要

G 蛋白偶联受体激酶(GRK)磷酸化激活的 G 蛋白偶联受体(GPCR)以启动受体脱敏。除了激酶结构域的典型磷酸受体位点外,激活的受体与一个独特的 docking 位点结合,赋予更高的亲和力并通过别构激活 GRK。最近的突变和结构研究支持这样一种模型,即受体 docking 通过稳定其约 20 个氨基酸的 N 端区域与激酶结构域的相互作用来激活 GRK。这种相互作用进而稳定了酶的封闭、更活跃的构象。为了研究这种相互作用对 GRK 激活过程的重要性,我们首先通过定点突变验证了视紫红质激酶(GRK1)的 N 端区域的功能,然后引入二硫键将 GRK1 的 N 端区域与激酶结构域上的特异性结合位点交联。交联蛋白的动力学和生物物理特性的表征表明,二硫键的形成大大提高了肽磷酸化的催化效率,但受体依赖性磷酸化、Meta II 稳定和转导蛋白激活的抑制不受影响。这些数据表明,N 端区域与激酶结构域的相互作用对于 GRK 激活很重要,但不决定 GRK 与激活的受体的亲和力。

相似文献

1
2
A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases.
J Biol Chem. 2009 Jun 19;284(25):17206-17215. doi: 10.1074/jbc.M809544200. Epub 2009 Apr 13.
3
Involvement of the C-terminal proline-rich motif of G protein-coupled receptor kinases in recognition of activated rhodopsin.
J Biol Chem. 2004 Nov 26;279(48):49741-6. doi: 10.1074/jbc.M407570200. Epub 2004 Sep 16.
4
Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1.
Nature. 2021 Jul;595(7868):600-605. doi: 10.1038/s41586-021-03721-x. Epub 2021 Jul 14.
5
Substrate-induced changes in the dynamics of rhodopsin kinase (G protein-coupled receptor kinase 1).
Biochemistry. 2012 Apr 24;51(16):3404-11. doi: 10.1021/bi300295y. Epub 2012 Apr 11.
6
8
Localization of the sites for Ca2+-binding proteins on G protein-coupled receptor kinases.
Biochemistry. 1998 Sep 29;37(39):13650-9. doi: 10.1021/bi980998z.

引用本文的文献

1
Grk1 Missense Mutations in Type II Oguchi Disease: A Literature Review.
Ann Biomed Res. 2024;5(2):1-7. doi: 10.61545/abr-5-128.
2
G protein-coupled receptor signaling: transducers and effectors.
Am J Physiol Cell Physiol. 2022 Sep 1;323(3):C731-C748. doi: 10.1152/ajpcell.00210.2022. Epub 2022 Jul 11.
3
Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1.
Nature. 2021 Jul;595(7868):600-605. doi: 10.1038/s41586-021-03721-x. Epub 2021 Jul 14.
4
The Open Question of How GPCRs Interact with GPCR Kinases (GRKs).
Biomolecules. 2021 Mar 17;11(3):447. doi: 10.3390/biom11030447.
5
Structure of a GRK5-Calmodulin Complex Reveals Molecular Mechanism of GRK Activation and Substrate Targeting.
Mol Cell. 2021 Jan 21;81(2):323-339.e11. doi: 10.1016/j.molcel.2020.11.026. Epub 2020 Dec 14.
6
New variants and in silico analyses in GRK1 associated Oguchi disease.
Hum Mutat. 2021 Feb;42(2):164-176. doi: 10.1002/humu.24140. Epub 2020 Nov 30.
8
Characterization of a hyperphosphorylated variant of G protein-coupled receptor kinase 5 expressed in E. coli.
Protein Expr Purif. 2020 Apr;168:105547. doi: 10.1016/j.pep.2019.105547. Epub 2019 Nov 29.
9
Structural Basis of Arrestin-Dependent Signal Transduction.
Trends Biochem Sci. 2018 Jun;43(6):412-423. doi: 10.1016/j.tibs.2018.03.005. Epub 2018 Apr 7.
10
The Role of G Protein-coupled Receptor Kinases in Cancer.
Int J Biol Sci. 2018 Feb 5;14(2):189-203. doi: 10.7150/ijbs.22896. eCollection 2018.

本文引用的文献

1
Mechanistic studies on the phosphorylation of photoexcited rhodopsin.
FEBS Lett. 1988 Sep 26;238(1):56-60. doi: 10.1016/0014-5793(88)80224-2.
3
Molecular basis for activation of G protein-coupled receptor kinases.
EMBO J. 2010 Oct 6;29(19):3249-59. doi: 10.1038/emboj.2010.206. Epub 2010 Aug 20.
5
Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation.
Biochemistry. 2009 Aug 4;48(30):7325-33. doi: 10.1021/bi900408g.
6
A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases.
J Biol Chem. 2009 Jun 19;284(25):17206-17215. doi: 10.1074/jbc.M809544200. Epub 2009 Apr 13.
7
GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail.
Biochemistry. 2009 May 26;48(20):4285-93. doi: 10.1021/bi900151g.
8
Different properties of the native and reconstituted heterotrimeric G protein transducin.
Biochemistry. 2008 Nov 25;47(47):12409-19. doi: 10.1021/bi8015444.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验