Suppr超能文献

不同配体状态下视紫红质激酶的结构揭示了参与G蛋白偶联受体激酶激活的关键元件。

Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation.

作者信息

Singh Puja, Wang Benlian, Maeda Tadao, Palczewski Krzysztof, Tesmer John J G

机构信息

Life Sciences Institute, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA.

出版信息

J Biol Chem. 2008 May 16;283(20):14053-62. doi: 10.1074/jbc.M708974200. Epub 2008 Mar 13.

Abstract

G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1.(Mg2+)2.ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

摘要

G蛋白偶联受体(GPCR)激酶(GRK)使活化的七螺旋受体磷酸化,导致其与G蛋白解偶联。本文报道了视紫红质激酶(GRK1)的六个晶体结构,不仅揭示了GRK的三种不同核苷酸结合状态,还揭示了两个据信参与识别活化GPCR的关键结构元件。第一个是激酶结构域的C末端延伸,在所有核苷酸结合的GRK1结构中均有观察到。第二个是N末端的5-30位残基,在GRK1.(Mg2+)2.ATP结构之一中观察到。N末端也明显被磷酸化,通过质谱分析鉴定出两个新的磷酸化位点。N末端和激酶结构域铰链附近的C末端延伸共定位表明,活化的GPCR通过与该区域结合来刺激激酶活性,以促进激酶结构域的完全闭合。

相似文献

1
2
Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1.
Nature. 2021 Jul;595(7868):600-605. doi: 10.1038/s41586-021-03721-x. Epub 2021 Jul 14.
3
Substrate-induced changes in the dynamics of rhodopsin kinase (G protein-coupled receptor kinase 1).
Biochemistry. 2012 Apr 24;51(16):3404-11. doi: 10.1021/bi300295y. Epub 2012 Apr 11.
4
Involvement of the C-terminal proline-rich motif of G protein-coupled receptor kinases in recognition of activated rhodopsin.
J Biol Chem. 2004 Nov 26;279(48):49741-6. doi: 10.1074/jbc.M407570200. Epub 2004 Sep 16.
5
6
A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases.
J Biol Chem. 2009 Jun 19;284(25):17206-17215. doi: 10.1074/jbc.M809544200. Epub 2009 Apr 13.
9
Structure of a monomeric variant of rhodopsin kinase at 2.5 Å resolution.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Jun 1;68(Pt 6):622-5. doi: 10.1107/S1744309112017435. Epub 2012 May 22.

引用本文的文献

1
GPCR kinases phosphorylate GPCR C-terminal peptides in a hierarchical manner.
Commun Biol. 2025 Jun 9;8(1):899. doi: 10.1038/s42003-025-08301-7.
3
Uncovering conserved networks and global conformational changes in G protein-coupled receptor kinases.
Comput Struct Biotechnol J. 2024 Sep 28;23:3445-3453. doi: 10.1016/j.csbj.2024.09.014. eCollection 2024 Dec.
4
G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias.
J Biol Chem. 2022 Sep;298(9):102279. doi: 10.1016/j.jbc.2022.102279. Epub 2022 Jul 19.
5
G protein-coupled receptor signaling: transducers and effectors.
Am J Physiol Cell Physiol. 2022 Sep 1;323(3):C731-C748. doi: 10.1152/ajpcell.00210.2022. Epub 2022 Jul 11.
6
G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs).
Pharmacol Ther. 2022 Mar;231:107977. doi: 10.1016/j.pharmthera.2021.107977. Epub 2021 Sep 1.
7
Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1.
Nature. 2021 Jul;595(7868):600-605. doi: 10.1038/s41586-021-03721-x. Epub 2021 Jul 14.
8
Historical Perspective of the G Protein-Coupled Receptor Kinase Family.
Cells. 2021 Mar 4;10(3):555. doi: 10.3390/cells10030555.
9
The Open Question of How GPCRs Interact with GPCR Kinases (GRKs).
Biomolecules. 2021 Mar 17;11(3):447. doi: 10.3390/biom11030447.
10
A New Paroxetine-Based GRK2 Inhibitor Reduces Internalization of the -Opioid Receptor.
Mol Pharmacol. 2020 Jun;97(6):392-401. doi: 10.1124/mol.119.118661. Epub 2020 Mar 31.

本文引用的文献

1
Mechanistic studies on the phosphorylation of photoexcited rhodopsin.
FEBS Lett. 1988 Sep 26;238(1):56-60. doi: 10.1016/0014-5793(88)80224-2.
2
The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module.
Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1272-7. doi: 10.1073/pnas.0610251104. Epub 2007 Jan 16.
3
A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses.
Ophthalmology. 2007 Jan;114(1):134-41. doi: 10.1016/j.ophtha.2006.05.069. Epub 2006 Oct 27.
4
Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin.
J Biol Chem. 2006 Dec 1;281(48):37237-45. doi: 10.1074/jbc.M606913200. Epub 2006 Oct 4.
5
Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses.
Science. 2006 Jul 28;313(5786):530-3. doi: 10.1126/science.1126612.
6
G protein-coupled receptor rhodopsin.
Annu Rev Biochem. 2006;75:743-67. doi: 10.1146/annurev.biochem.75.103004.142743.
8
The structure of G protein-coupled receptor kinase (GRK)-6 defines a second lineage of GRKs.
J Biol Chem. 2006 Jun 16;281(24):16785-93. doi: 10.1074/jbc.M601327200. Epub 2006 Apr 13.
9
Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex.
Science. 2005 Dec 9;310(5754):1686-90. doi: 10.1126/science.1118890.
10
Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells.
J Biol Chem. 2005 Dec 16;280(50):41184-91. doi: 10.1074/jbc.M506935200. Epub 2005 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验