Marenich Aleksandr V, Cramer Christopher J, Truhlar Donald G
Department of Chemistry and Supercomputing Institute, 207 Pleasant St. SE, University of Minnesota, Minneapolis, Minnesota, USA.
J Phys Chem B. 2009 Apr 9;113(14):4538-43. doi: 10.1021/jp809094y.
The SM6, SM8, and SMD quantum mechanical aqueous continuum solvation models are applied to predict free energies of aqueous solvation for 61 molecules in the SAMPL1 test set described elsewhere (Guthrie. J. Phys. Chem. B 2009, 113, 4501-4507). For direct comparison to other models, frozen geometries, provided by Guthrie, were used together with the M06-2X density functional and the 6-31G(d) basis set. For the bulk electrostatic component of the solvation free energy, SM6 and SM8 employ a generalized Born model that uses polarized discrete partial atomic charges to model the electron density, with these charges being calculated by the CM4 and CM4M class IV charge models, respectively; SMD uses the polarized continuous quantum mechanical charge density. If five sulfonylureas are removed from the SAMPL1 set, the root-mean-square deviations (RMSDs) of SM6, SM8, and SMD on the remaining 56 molecules are 2.4, 2.6, and 2.5 kcal mol(-1), respectively. The SM6, SM8, and SMD RMSDs on the five sulfonylureas are 14.2, 12.6, and 11.1 kcal mol(-1), respectively; however, we suggest that the uncertainty in the target solvation free energies for these molecules may be quite large.
将SM6、SM8和SMD量子力学水相连续介质溶剂化模型应用于预测其他文献(Guthrie. J. Phys. Chem. B 2009, 113, 4501 - 4507)中描述的SAMPL1测试集里61个分子的水相溶剂化自由能。为了与其他模型直接比较,使用了Guthrie提供的冻结几何结构,并结合M06 - 2X密度泛函和6 - 31G(d)基组。对于溶剂化自由能的体静电分量,SM6和SM8采用广义玻恩模型,该模型使用极化离散部分原子电荷来模拟电子密度,这些电荷分别由CM4和CM4M IV类电荷模型计算;SMD使用极化连续量子力学电荷密度。如果从SAMPL1集合中移除五个磺酰脲类化合物,SM6、SM8和SMD对其余56个分子的均方根偏差(RMSD)分别为2.4、2.6和2.5 kcal mol⁻¹。SM6、SM8和SMD对这五个磺酰脲类化合物的RMSD分别为14.2、12.6和11.1 kcal mol⁻¹;然而,我们认为这些分子目标溶剂化自由能的不确定性可能相当大。