Bagos Pantelis G, Tsirigos Konstantinos D, Liakopoulos Theodore D, Hamodrakas Stavros J
Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15701, Greece.
J Proteome Res. 2008 Dec;7(12):5082-93. doi: 10.1021/pr800162c.
We present a Hidden Markov Model method for the prediction of lipoprotein signal peptides of Gram-positive bacteria, trained on a set of 67 experimentally verified lipoproteins. The method outperforms LipoP and the methods based on regular expression patterns, in various data sets containing experimentally characterized lipoproteins, secretory proteins, proteins with an N-terminal TM segment and cytoplasmic proteins. The method is also very sensitive and specific in the detection of secretory signal peptides and in terms of overall accuracy outperforms even SignalP, which is the top-scoring method for the prediction of signal peptides. PRED-LIPO is freely available at http://bioinformatics.biol.uoa.gr/PRED-LIPO/, and we anticipate that it will be a valuable tool for the experimentalists studying secreted proteins and lipoproteins from Gram-positive bacteria.
我们提出了一种用于预测革兰氏阳性菌脂蛋白信号肽的隐马尔可夫模型方法,该方法基于一组67个经实验验证的脂蛋白进行训练。在包含经实验表征的脂蛋白、分泌蛋白、具有N端跨膜片段的蛋白和细胞质蛋白的各种数据集中,该方法优于LipoP和基于正则表达式模式的方法。该方法在检测分泌信号肽方面也非常灵敏和特异,并且在总体准确性方面甚至超过了SignalP,后者是信号肽预测得分最高的方法。PRED-LIPO可在http://bioinformatics.biol.uoa.gr/PRED-LIPO/免费获取,我们预计它将成为研究革兰氏阳性菌分泌蛋白和脂蛋白的实验人员的宝贵工具。