Suppr超能文献

革兰氏阴性菌中脂蛋白信号肽的预测

Prediction of lipoprotein signal peptides in Gram-negative bacteria.

作者信息

Juncker Agnieszka S, Willenbrock Hanni, Von Heijne Gunnar, Brunak Søren, Nielsen Henrik, Krogh Anders

机构信息

Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby 2800, Denmark.

出版信息

Protein Sci. 2003 Aug;12(8):1652-62. doi: 10.1110/ps.0303703.

Abstract

A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.

摘要

一种用于预测革兰氏阴性真细菌中脂蛋白信号肽的方法——LipoP已被开发出来。隐马尔可夫模型(HMM)能够区分脂蛋白(信号肽酶II切割的蛋白质)、信号肽酶I切割的蛋白质、细胞质蛋白和跨膜蛋白。在一组信号肽酶I切割的、细胞质的和跨膜的蛋白质中,该预测器能够正确预测96.8%的脂蛋白,假阳性率仅为0.3%。所得结果明显优于先前开发的方法。尽管革兰氏阳性菌的脂蛋白信号肽与革兰氏阴性菌不同,但HMM能够识别革兰氏阳性测试集中92.9%的脂蛋白。对12个革兰氏阴性菌基因组和1个革兰氏阳性菌基因组进行了全基因组搜索。将大肠杆菌K12的结果与新的实验数据进行了比较,HMM的预测结果与经实验验证的脂蛋白吻合良好。还开发了一种基于神经网络的预测器用于比较,其结果非常相似。LipoP可作为网络服务器在www.cbs.dtu.dk/services/LipoP/上获取。

相似文献

9
Improved prediction of signal peptides: SignalP 3.0.信号肽预测的改进:SignalP 3.0
J Mol Biol. 2004 Jul 16;340(4):783-95. doi: 10.1016/j.jmb.2004.05.028.

引用本文的文献

本文引用的文献

1
Probabilistic alignment of motifs with sequences.基序与序列的概率比对。
Bioinformatics. 2002 Aug;18(8):1091-101. doi: 10.1093/bioinformatics/18.8.1091.
3
The PROSITE database, its status in 2002.PROSITE数据库及其2002年的状况。
Nucleic Acids Res. 2002 Jan 1;30(1):235-8. doi: 10.1093/nar/30.1.235.
4
GenBank.基因银行
Nucleic Acids Res. 2002 Jan 1;30(1):17-20. doi: 10.1093/nar/30.1.17.
9
Hidden neural networks.隐藏神经网络
Neural Comput. 1999 Feb 15;11(2):541-63. doi: 10.1162/089976699300016764.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验