Suppr超能文献

通过无坐标变换的绝热动力学高效直接地生成多维自由能面。

Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations.

作者信息

Abrams Jerry B, Tuckerman Mark E

机构信息

Department of Chemistry, New York University, New York, New York 10003, USA.

出版信息

J Phys Chem B. 2008 Dec 11;112(49):15742-57. doi: 10.1021/jp805039u.

Abstract

Adiabatic free energy dynamics (AFED) was introduced by Rosso et al. [J. Chem. Phys. 2002, 116, 4389] for computing free energy profiles quickly and accurately using a dynamical adiabatic separation between a set of collective variables or reaction coordinates and the remaining degrees of freedom of a system. This approach has been shown to lead to a significant gain in efficiency versus traditional methods such as umbrella sampling, thermodynamic integration, and free energy perturbation for generating one-dimensional free energy profiles. More importantly, AFED is able to generate multidimensional free energy surfaces efficiently via full sweeps of the surface that rapidly map out the locations of the free energy minima. The most significant drawback to the AFED approach is the need to transform the coordinates into a generalized coordinate system that explicitly contains the collective variables of interest. Recently, Maragliano and Vanden-Eijnden built upon the AFED approach by introducing a set of extended phase-space variables, to which the adiabatic decoupling and high temperature are applied [Chem. Phys. Lett. 2006, 426, 168]. In this scheme, which the authors termed "temperature accelerated molecular dynamics" or TAMD, the need for explicit coordinate transformations is circumvented. The ability of AFED and TAMD to generate free energy surfaces efficiently depends on the thermostatting mechanism employed, since both approaches are inherently nonequilibrium due to the adiabatic decoupling. Indeed, Maragliano and Vanden-Eijnden did not report any direct generation of free energy surfaces within the overdamped Langevin dynamics employed by these authors. Here, we show that by formulating TAMD in a manner that is closer to the original AFED approach, including the generalized Gaussian moment thermostat (GGMT) and multiple time-scale integration, multidimensional free energy surfaces for complex systems can be generated directly from the probability distribution function of the extended phase-space variables. The new TAMD formulation, which we term driven AFED or d-AFED, is applied to compare the conformational preferences of small peptides both in gas phase and in solution for three force fields. The results show that d-AFED/TAMD accurately and efficiently generates free energy surfaces in two collective variables useful for characterizing the conformations, namely, the radius of gyration, R(G), and number of hydrogen bonds, N(H).

摘要

绝热自由能动力学(AFED)由罗索等人[《化学物理杂志》,2002年,第116卷,第4389页]提出,用于通过一组集体变量或反应坐标与系统其余自由度之间的动态绝热分离来快速准确地计算自由能分布。与传统方法(如伞形采样、热力学积分和自由能微扰)相比,这种方法已被证明能显著提高生成一维自由能分布的效率。更重要的是,AFED能够通过对表面进行全面扫描来有效地生成多维自由能表面,从而快速确定自由能最小值的位置。AFED方法最显著的缺点是需要将坐标转换为明确包含感兴趣集体变量的广义坐标系。最近,马拉利亚诺和范登艾恩德在AFED方法的基础上,引入了一组扩展相空间变量,并对其应用绝热解耦和高温[《化学物理快报》,2006年,第426卷,第168页]。在作者称之为“温度加速分子动力学”或TAMD的这种方案中,避免了对显式坐标变换的需求。AFED和TAMD有效生成自由能表面的能力取决于所采用的恒温机制,因为由于绝热解耦,这两种方法本质上都是非平衡的。实际上,马拉利亚诺和范登艾恩德在这些作者所采用的过阻尼朗之万动力学中并未报告任何直接生成自由能表面的情况。在这里,我们表明,通过以更接近原始AFED方法的方式来构建TAMD,包括广义高斯矩恒温器(GGMT)和多时间尺度积分,可以直接从扩展相空间变量的概率分布函数生成复杂系统的多维自由能表面。我们将新的TAMD公式称为驱动AFED或d - AFED,并应用它来比较三种力场下小肽在气相和溶液中的构象偏好。结果表明,d - AFED/TAMD能准确有效地生成两个用于表征构象的集体变量的自由能表面,即回转半径R(G)和氢键数N(H)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验