Bajpai Shitanshu, Petkov Brian K, Tong Muchen, Abreu Charlles R A, Nair Nisanth N, Tuckerman Mark E
Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India.
Department of Chemistry, New York University (NYU), New York, New York, USA.
J Comput Chem. 2023 Oct 30;44(28):2166-2183. doi: 10.1002/jcc.27182. Epub 2023 Jul 18.
Collective variable (CV)-based enhanced sampling techniques are widely used today for accelerating barrier-crossing events in molecular simulations. A class of these methods, which includes temperature accelerated molecular dynamics (TAMD)/driven-adiabatic free energy dynamics (d-AFED), unified free energy dynamics (UFED), and temperature accelerated sliced sampling (TASS), uses an extended variable formalism to achieve quick exploration of conformational space. These techniques are powerful, as they enhance the sampling of a large number of CVs simultaneously compared to other techniques. Extended variables are kept at a much higher temperature than the physical temperature by ensuring adiabatic separation between the extended and physical subsystems and employing rigorous thermostatting. In this work, we present a computational platform to perform extended phase space enhanced sampling simulations using the open-source molecular dynamics engine OpenMM. The implementation allows users to have interoperability of sampling techniques, as well as employ state-of-the-art thermostats and multiple time-stepping. This work also presents protocols for determining the critical parameters and procedures for reconstructing high-dimensional free energy surfaces. As a demonstration, we present simulation results on the high dimensional conformational landscapes of the alanine tripeptide in vacuo, tetra-N-methylglycine (tetra-sarcosine) peptoid in implicit solvent, and the Trp-cage mini protein in explicit water.
基于集体变量(CV)的增强采样技术如今被广泛用于加速分子模拟中的势垒穿越事件。这类方法包括温度加速分子动力学(TAMD)/驱动绝热自由能动力学(d-AFED)、统一自由能动力学(UFED)以及温度加速切片采样(TASS),它们使用扩展变量形式来快速探索构象空间。这些技术很强大,因为与其他技术相比,它们能同时增强大量集体变量的采样。通过确保扩展子系统和物理子系统之间的绝热分离并采用严格的恒温控制,扩展变量被保持在比物理温度高得多的温度。在这项工作中,我们展示了一个计算平台,用于使用开源分子动力学引擎OpenMM进行扩展相空间增强采样模拟。该实现允许用户实现采样技术的互操作性,并采用最先进的恒温器和多时间步长。这项工作还展示了确定关键参数的协议以及重建高维自由能表面的程序。作为演示,我们展示了在真空中丙氨酸三肽、隐式溶剂中的四-N-甲基甘氨酸(四肌氨酸)类肽以及显式水中的色氨酸笼状小蛋白的高维构象景观上的模拟结果。