Suppr超能文献

纳秒时间尺度下,水/CeO界面处的长程质子和氢氧根离子转移动力学:反应性分子动力学模拟与动力学分析

Long-range proton and hydroxide ion transfer dynamics at the water/CeO interface in the nanosecond regime: reactive molecular dynamics simulations and kinetic analysis.

作者信息

Kobayashi Taro, Ikeda Tatsushi, Nakayama Akira

机构信息

Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan

出版信息

Chem Sci. 2024 Apr 2;15(18):6816-6832. doi: 10.1039/d4sc01422g. eCollection 2024 May 8.

Abstract

The structural properties, dynamical behaviors, and ion transport phenomena at the interface between water and cerium oxide are investigated by reactive molecular dynamics (MD) simulations employing neural network potentials (NNPs). The NNPs are trained to reproduce density functional theory (DFT) results, and DFT-based MD (DFT-MD) simulations with enhanced sampling techniques and refinement schemes are employed to efficiently and systematically acquire training data that include diverse hydrogen-bonding configurations caused by proton hopping events. The water interfaces with two low-index surfaces of (111) and (110) are explored with these NNPs, and the structure and long-range proton and hydroxide ion transfer dynamics are examined with unprecedented system sizes and long simulation times. Various types of proton hopping events at the interface are categorized and analyzed in detail. Furthermore, in order to decipher the proton and hydroxide ion transport phenomena along the surface, a counting analysis based on the semi-Markov process is formulated and applied to the MD trajectories to obtain reaction rates by considering the transport as stochastic jump processes. Through this model, the coupling between hopping events, vibrational motions, and hydrogen bond networks at the interface are quantitatively examined, and the high activity and ion transport phenomena at the water/CeO interface are unequivocally revealed in the nanosecond regime.

摘要

采用神经网络势(NNP)的反应分子动力学(MD)模拟研究了水与氧化铈界面处的结构性质、动力学行为和离子传输现象。对NNP进行训练以重现密度泛函理论(DFT)结果,并采用基于DFT的MD(DFT-MD)模拟以及增强采样技术和细化方案,高效且系统地获取训练数据,这些数据包括由质子跳跃事件引起的各种氢键构型。利用这些NNP研究了水与(111)和(110)两个低指数表面的界面,并以前所未有的系统规模和长时间模拟研究了结构以及长程质子和氢氧根离子转移动力学。对界面处各种类型的质子跳跃事件进行了分类和详细分析。此外,为了解释质子和氢氧根离子沿表面的传输现象,基于半马尔可夫过程制定了计数分析方法,并将其应用于MD轨迹,通过将传输视为随机跳跃过程来获得反应速率。通过该模型,定量研究了界面处跳跃事件、振动运动和氢键网络之间的耦合,并在纳秒时间尺度上明确揭示了水/氧化铈界面处的高活性和离子传输现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc4e/11077578/c24cfc5417b1/d4sc01422g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验