Meister Stefan, Schoen David T, Topinka Mark A, Minor Andrew M, Cui Yi
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
Nano Lett. 2008 Dec;8(12):4562-7. doi: 10.1021/nl802808f.
Solid-state structural transformation coupled with an electronic property change is an important mechanism for nonvolatile information storage technologies, such as phase-change memories. Here we exploit phase-change GeTe single-nanowire devices combined with ex situ and in situ transmission electron microscopy to correlate directly nanoscale structural transformations with electrical switching and discover surprising results. Instead of crystalline-amorphous transformation, the dominant switching mechanism during multiple cycling appears to be the opening and closing of voids in the nanowires due to material migration, which offers a new mechanism for memory. During switching, composition change and the formation of banded structural defects are observed in addition to the expected crystal-amorphous transformation. Our method and results are important to phase-change memories specifically, but also to any device whose operation relies on a small scale structural transformation.
固态结构转变与电子性质变化相结合是相变存储器等非易失性信息存储技术的重要机制。在此,我们利用相变GeTe单纳米线器件,结合非原位和原位透射电子显微镜,将纳米级结构转变与电开关直接关联起来,并发现了惊人的结果。在多次循环过程中,主导的开关机制似乎不是晶态-非晶态转变,而是由于材料迁移导致纳米线中孔洞的开合,这为存储器提供了一种新机制。在开关过程中,除了预期的晶体-非晶态转变外,还观察到了成分变化和带状结构缺陷的形成。我们的方法和结果不仅对相变存储器特别重要,而且对任何其操作依赖于小规模结构转变的器件都很重要。