Tierno Pietro, Golestanian Ramin, Pagonabarraga Ignacio, Sagués Francesc
Departament de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
J Phys Chem B. 2008 Dec 25;112(51):16525-8. doi: 10.1021/jp808354n.
To achieve permanent propulsion of micro-objects in confined fluids is an elusive but challenging goal that will foster future development of microfluidics and biotechnology. Recent attempts based on a wide variety of strategies are still far from being able to design simple, versatile, and fully controllable swimming engines on the microscale. Here we show that DNA-linked anisotropic colloidal rotors, composed of paramagnetic colloidal particles with different or similar size, achieve controlled propulsion when subjected to a magnetic field precessing around an axis parallel to the plane of motion. During cycling motion, stronger viscous friction at the bounding plate, as compared to fluid resistance in the bulk, creates an asymmetry in dissipation that rectifies rotation into a net translation of the suspended objects. The potentiality of the method, applicable to any externally rotated micro/nano-object, is finally demonstrated in a microfluidic platform by guiding the colloidal rotors through microscopic-size channels connected in a simple geometry.
在受限流体中实现微物体的永久推进是一个难以捉摸但具有挑战性的目标,这将推动微流体技术和生物技术的未来发展。基于各种策略的近期尝试仍远不能在微尺度上设计出简单、通用且完全可控的游动引擎。在此我们表明,由不同或相似尺寸的顺磁性胶体颗粒组成的DNA连接各向异性胶体转子,在受到围绕平行于运动平面的轴进动的磁场作用时,能实现可控推进。在循环运动过程中,与主体流体阻力相比,边界板处更强的粘性摩擦会产生耗散不对称性,从而将旋转整流为悬浮物体的净平移。该方法适用于任何外部旋转的微/纳米物体,最终通过在微流体平台中引导胶体转子通过以简单几何形状连接的微观尺寸通道得以证明。