Mikucki Jill A, Pearson Ann, Johnston David T, Turchyn Alexandra V, Farquhar James, Schrag Daniel P, Anbar Ariel D, Priscu John C, Lee Peter A
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA.
Science. 2009 Apr 17;324(5925):397-400. doi: 10.1126/science.1167350.
An active microbial assemblage cycles sulfur in a sulfate-rich, ancient marine brine beneath Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet, with Fe(III) serving as the terminal electron acceptor. Isotopic measurements of sulfate, water, carbonate, and ferrous iron and functional gene analyses of adenosine 5'-phosphosulfate reductase imply that a microbial consortium facilitates a catalytic sulfur cycle. These metabolic pathways result from a limited organic carbon supply because of the absence of contemporary photosynthesis, yielding a subglacial ferrous brine that is anoxic but not sulfidic. Coupled biogeochemical processes below the glacier enable subglacial microbes to grow in extended isolation, demonstrating how analogous organic-starved systems, such as Neoproterozoic oceans, accumulated Fe(II) despite the presence of an active sulfur cycle.
在南极东部冰盖的一个出口冰川泰勒冰川下方富含硫酸盐的古老海洋盐水中,一个活跃的微生物群落以铁(III)作为终端电子受体循环硫。硫酸盐、水、碳酸盐和亚铁的同位素测量以及腺苷5'-磷酸硫酸还原酶的功能基因分析表明,一个微生物群落促进了催化硫循环。由于缺乏当代光合作用,这些代谢途径是由有限的有机碳供应导致的,产生了一种冰川下的亚铁盐水,该盐水是缺氧的但不是硫化的。冰川下方耦合的生物地球化学过程使冰川下的微生物能够在长期隔离中生长,这表明类似的有机匮乏系统,如新元古代海洋,尽管存在活跃的硫循环,但仍能积累亚铁。