Chen Song-Can, Li Xiao-Min, Battisti Nicola, Guan Guoqing, Montoya Maria A, Osvatic Jay, Pjevac Petra, Pollak Shaul, Richter Andreas, Schintlmeister Arno, Wanek Wolfgang, Mussmann Marc, Loy Alexander
State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, China.
MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
Nature. 2025 Aug 27. doi: 10.1038/s41586-025-09467-0.
Microorganisms have driven Earth's sulfur cycle since the emergence of life, yet the sulfur-cycling capacities of microorganisms and their integration with other element cycles remain incompletely understood. One such uncharacterized metabolism is the coupling of sulfide oxidation with iron(III) oxide reduction, a ubiquitous environmental process hitherto considered to be strictly abiotic. Here we present a comprehensive genomic analysis of sulfur metabolism across prokaryotes, and reveal bacteria that are capable of oxidizing sulfide using extracellular solid phase iron(III). Based on a phylogenetic framework of over hundred genes involved in dissimilatory transformation of sulfur compounds, we recorded sulfur-cycling capacity in most bacterial and archaeal phyla. Metabolic reconstructions predicted co-occurrence of sulfur compound oxidation and iron(III) oxide respiration in diverse members of 37 prokaryotic phyla. Physiological and transcriptomic evidence demonstrated that a cultivated representative, Desulfurivibrio alkaliphilus, grows autotrophically by oxidizing dissolved sulfide or iron monosulfide (FeS) to sulfate with ferrihydrite as an extracellular iron(III) electron acceptor. The biological process outpaced the abiotic process at environmentally relevant sulfide concentrations. These findings expand the known diversity of sulfur-cycling microorganisms and unveil a biological mechanism that links sulfur and iron cycling in anoxic environments, thus highlighting the fundamental role of microorganisms in global element cycles.
自生命出现以来,微生物就驱动着地球的硫循环,但微生物的硫循环能力及其与其他元素循环的整合仍未得到充分了解。一种尚未被表征的代谢过程是硫化物氧化与氧化铁还原的耦合,这是一个普遍存在的环境过程,迄今为止被认为是严格非生物的。在这里,我们对原核生物的硫代谢进行了全面的基因组分析,并揭示了能够利用细胞外固相铁(III)氧化硫化物的细菌。基于参与硫化合物异化转化的一百多个基因的系统发育框架,我们记录了大多数细菌和古菌门的硫循环能力。代谢重建预测,在37个原核生物门的不同成员中,硫化合物氧化和氧化铁呼吸会同时发生。生理学和转录组学证据表明,一种已培养的代表性菌株嗜碱脱硫弧菌,以水铁矿作为细胞外铁(III)电子受体,通过将溶解的硫化物或硫化亚铁(FeS)氧化为硫酸盐来进行自养生长。在与环境相关的硫化物浓度下,生物过程超过了非生物过程。这些发现扩展了已知的硫循环微生物的多样性,并揭示了一种在缺氧环境中将硫和铁循环联系起来的生物学机制,从而突出了微生物在全球元素循环中的基本作用。