Lee Hyung-Soo, Kim Daijin
Research Lab., Olaworks, Inc., 738-1, Yeoksam 1-dong, Gangnam-gu, Seoul 135-924, Korea.
IEEE Trans Pattern Anal Mach Intell. 2009 Jun;31(6):1102-16. doi: 10.1109/TPAMI.2008.286.
The Active appearance model (AAM) is a well-known model that can represent a non-rigid object effectively. However, the fitting result is often unsatisfactory when an input image deviates from the training images due to its fixed shape and appearance model. To obtain more robust AAM fitting, we propose a tensor-based AAM that can handle a variety of subjects, poses, expressions, and illuminations in the tensor algebra framework, which consists of an image tensor and a model tensor. The image tensor estimates image variations such as pose, expression, and illumination of the input image using two different variation estimation techniques: discrete and continuous variation estimation. The model tensor generates variation-specific AAM basis vectors from the estimated image variations, which leads to more accurate fitting results. To validate the usefulness of the tensor-based AAM, we performed variation-robust face recognition using the tensor-based AAM fitting results. To do, we propose indirect AAM feature transformation. Experimental results show that tensor-based AAM with continuous variation estimation outperforms that with discrete variation estimation and conventional AAM in terms of the average fitting error and the face recognition rate.
主动外观模型(AAM)是一种著名的模型,能够有效地表示非刚性物体。然而,当输入图像由于其固定的形状和外观模型而偏离训练图像时,拟合结果往往不尽人意。为了获得更稳健的AAM拟合,我们提出了一种基于张量的AAM,它可以在张量代数框架中处理各种主体、姿势、表情和光照,该框架由图像张量和模型张量组成。图像张量使用两种不同的变化估计技术来估计输入图像的姿势、表情和光照等图像变化:离散和连续变化估计。模型张量根据估计的图像变化生成特定于变化的AAM基向量,从而得到更准确的拟合结果。为了验证基于张量的AAM的有用性,我们使用基于张量的AAM拟合结果进行了抗变化的人脸识别。为此,我们提出了间接AAM特征变换。实验结果表明,在平均拟合误差和人脸识别率方面,具有连续变化估计的基于张量的AAM优于具有离散变化估计的基于张量的AAM和传统AAM。