Keeney Paula M, Quigley Caitlin K, Dunham Lisa D, Papageorge Christina M, Iyer Shilpa, Thomas Ravindar R, Schwarz Kathleen M, Trimmer Patricia A, Khan Shaharyar M, Portell Francisco R, Bergquist Kristen E, Bennett James P
Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Virginia, Charlottesville, VA 22908, USA.
Hum Gene Ther. 2009 Aug;20(8):897-907. doi: 10.1089/hum.2009.023.
Neurodegeneration in Parkinson's disease (PD) affects mainly dopaminergic neurons in the substantia nigra, where age-related, increasing percentages of cells lose detectable respiratory activity associated with depletion of intact mitochondrial DNA (mtDNA). Replenishment of mtDNA might improve neuronal bioenergetic function and prevent further cell death. We developed a technology ("ProtoFection") that uses recombinant human mitochondrial transcription factor A (TFAM) engineered with an N-terminal protein transduction domain (PTD) followed by the SOD2 mitochondrial localization signal (MLS) to deliver mtDNA cargo to the mitochondria of living cells. MTD-TFAM (MTD = PTD + MLS = "mitochondrial transduction domain") binds mtDNA and rapidly transports it across plasma membranes to mitochondria. For therapeutic proof-of-principle we tested ProtoFection technology in Parkinson's disease cybrid cells, using mtDNA generated from commercially available human genomic DNA (gDNA; Roche). Nine to 11 weeks after single exposures to MTD-TFAM + mtDNA complex, PD cybrid cells with impaired respiration and reduced mtDNA genes increased their mtDNA gene copy numbers up to 24-fold, mtDNA-derived RNAs up to 35-fold, TFAM and ETC proteins, cell respiration, and mitochondrial movement velocities. Cybrid cells with no or minimal basal mitochondrial impairments showed reduced or no responses to treatment, suggesting the possibility of therapeutic selectivity. Exposure of PD but not control cybrid cells to MTD-TFAM protein alone or MTD-TFAM + mtDNA complex increased expression of PGC-1alpha, suggesting activation of mitochondrial biogenesis. ProtoFection technology for mitochondrial gene therapy holds promise for improving bioenergetic function in impaired PD neurons and needs additional development to define its pharmacodynamics and delineate its molecular mechanisms. It also is unclear whether single-donor gDNA for generating mtDNA would be a preferred therapeutic compared with the pooled gDNA used in this study.
帕金森病(PD)中的神经退行性变主要影响黑质中的多巴胺能神经元,随着年龄增长,该部位越来越多的细胞丧失与完整线粒体DNA(mtDNA)耗竭相关的可检测呼吸活性。补充mtDNA可能改善神经元的生物能量功能并防止进一步的细胞死亡。我们开发了一种技术(“原生转染”),该技术使用重组人线粒体转录因子A(TFAM),其工程化设计为带有N端蛋白质转导结构域(PTD),其后是超氧化物歧化酶2线粒体定位信号(MLS),以将mtDNA货物递送至活细胞的线粒体。MTD-TFAM(MTD = PTD + MLS =“线粒体转导结构域”)结合mtDNA并迅速将其跨质膜转运至线粒体。为了进行治疗原理验证,我们在帕金森病细胞杂交体中测试了原生转染技术,使用从市售人基因组DNA(gDNA;罗氏公司)产生的mtDNA。单次暴露于MTD-TFAM + mtDNA复合物9至11周后,呼吸受损且mtDNA基因减少的PD细胞杂交体将其mtDNA基因拷贝数增加多达24倍,mtDNA衍生的RNA增加多达35倍,TFAM和电子传递链(ETC)蛋白、细胞呼吸以及线粒体移动速度均增加。基础线粒体损伤无或极小的细胞杂交体对治疗的反应减少或无反应,提示治疗选择性的可能性。将PD而非对照细胞杂交体暴露于单独的MTD-TFAM蛋白或MTD-TFAM + mtDNA复合物可增加过氧化物酶体增殖物激活受体γ共激活因子1α(PGC-1α)的表达,提示线粒体生物发生的激活。用于线粒体基因治疗的原生转染技术有望改善受损PD神经元的生物能量功能,需要进一步发展以确定其药效学并阐明其分子机制。与本研究中使用的混合gDNA相比,用于产生mtDNA的单供体gDNA是否会是更优的治疗方法也尚不清楚。