Wu Xundong E, Mel Bartlett W
Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
Neuron. 2009 Apr 16;62(1):31-41. doi: 10.1016/j.neuron.2009.02.021.
Medial temporal lobe structures are responsible for recording the continuous stream of autobiographical memories that define our unique personal history. Remarkably, these areas can construct durable memories from brief exposures to the constantly changing activity patterns arriving from antecedent cortical areas. Using a computer model of the hippocampal Schaffer collateral pathway that incorporates evidence for dendritic spikes in CA1 pyramidal neurons, we searched for biologically-plausible long-term potentiation (LTP) and homeostatic depression (HD) rules that maximize "online" learning capacity. We found memory utilization is most efficient when (1) very few synapses are modified to store each pattern, (2) LTP, the learning operation, is dendrite-specific and gated by distinct pre- and postsynaptic thresholds, (3) HD, the forgetting operation, co-occurs with LTP and targets least-recently potentiated synapses, and (4) both LTP and HD are all-or-none, leading de facto to binary-valued synaptic weights. In networks containing up to 40 million synapses, the learning scheme led to order-of-magnitude capacity increases compared to conventional plasticity rules.
内侧颞叶结构负责记录构成我们独特个人历史的连续自传式记忆流。值得注意的是,这些区域能够通过短暂接触来自先前皮质区域的不断变化的活动模式来构建持久记忆。利用一个包含CA1锥体神经元中树突棘证据的海马体沙费尔侧支通路的计算机模型,我们寻找了能使“在线”学习能力最大化的生物学上合理的长时程增强(LTP)和稳态抑制(HD)规则。我们发现,当(1)极少突触被修改以存储每种模式,(2)作为学习操作的LTP是树突特异性的,并由不同的突触前和突触后阈值控制,(3)作为遗忘操作的HD与LTP同时发生,并针对最近最少增强的突触,以及(4)LTP和HD都是全或无的,实际上导致二值化的突触权重时,记忆利用效率最高。在包含多达4000万个突触的网络中,与传统可塑性规则相比,该学习方案导致容量增加了几个数量级。