Fujiki Ryoji, Chikanishi Toshihiro, Hashiba Waka, Ito Hiroaki, Takada Ichiro, Roeder Robert G, Kitagawa Hirochika, Kato Shigeaki
Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
Nature. 2009 May 21;459(7245):455-9. doi: 10.1038/nature07954. Epub 2009 Apr 19.
The post-translational modifications of histone tails generate a 'histone code' that defines local and global chromatin states. The resultant regulation of gene function is thought to govern cell fate, proliferation and differentiation. Reversible histone modifications such as methylation are under mutual controls to organize chromosomal events. Among the histone modifications, methylation of specific lysine and arginine residues seems to be critical for chromatin configuration and control of gene expression. Methylation of histone H3 lysine 4 (H3K4) changes chromatin into a transcriptionally active state. Reversible modification of proteins by beta-N-acetylglucosamine (O-GlcNAc) in response to serum glucose levels regulates diverse cellular processes. However, the epigenetic impact of protein GlcNAcylation is unknown. Here we report that nuclear GlcNAcylation of a histone lysine methyltransferase (HKMT), MLL5, by O-GlcNAc transferase facilitates retinoic-acid-induced granulopoiesis in human HL60 promyelocytes through methylation of H3K4. MLL5 is biochemically identified in a GlcNAcylation-dependent multi-subunit complex associating with nuclear retinoic acid receptor RARalpha (also known as RARA), serving as a mono- and di-methyl transferase to H3K4. GlcNAcylation at Thr 440 in the MLL5 SET domain evokes its H3K4 HKMT activity and co-activates RARalpha in target gene promoters. Increased nuclear GlcNAcylation by means of O-GlcNAc transferase potentiates retinoic-acid-induced HL60 granulopoiesis and restores the retinoic acid response in the retinoic-acid-resistant HL60-R2 cell line. Thus, nuclear MLL5 GlcNAcylation triggers cell lineage determination of HL60 through activation of its HKMT activity.
组蛋白尾部的翻译后修饰产生一种“组蛋白密码”,该密码定义了局部和整体的染色质状态。由此产生的基因功能调控被认为决定了细胞命运、增殖和分化。诸如甲基化之类的可逆组蛋白修饰受到相互控制,以组织染色体事件。在组蛋白修饰中,特定赖氨酸和精氨酸残基的甲基化似乎对染色质构型和基因表达控制至关重要。组蛋白H3赖氨酸4(H3K4)的甲基化将染色质转变为转录活性状态。响应血清葡萄糖水平,β-N-乙酰葡糖胺(O-GlcNAc)对蛋白质的可逆修饰调节多种细胞过程。然而,蛋白质O-GlcNAc化的表观遗传影响尚不清楚。在此,我们报告O-GlcNAc转移酶对组蛋白赖氨酸甲基转移酶(HKMT)MLL5进行的细胞核O-GlcNAc化,通过H3K4甲基化促进人HL60早幼粒细胞中视黄酸诱导的粒细胞生成。MLL5在与细胞核视黄酸受体RARα(也称为RARA)相关的O-GlcNAc化依赖性多亚基复合物中被生化鉴定,作为H3K4的单甲基和二甲基转移酶。MLL5 SET结构域中苏氨酸440处的O-GlcNAc化激发其H3K4 HKMT活性,并在靶基因启动子中共同激活RARα。通过O-GlcNAc转移酶增加细胞核O-GlcNAc化可增强视黄酸诱导的HL60粒细胞生成,并恢复视黄酸抗性HL60-R2细胞系中的视黄酸反应。因此,细胞核MLL5的O-GlcNAc化通过激活其HKMT活性触发HL60的细胞谱系决定。