Suppr超能文献

从多种蛋白质结构域组合推断蛋白质-蛋白质相互作用。

Inferring protein-protein interactions from multiple protein domain combinations.

作者信息

Kanaan Simon P, Huang Chengbang, Wuchty Stefan, Chen Danny Z, Izaguirre Jesús A

机构信息

Department of Computer Science, University of Notre Dame, Notre Dame, IN, USA.

出版信息

Methods Mol Biol. 2009;541:43-59. doi: 10.1007/978-1-59745-243-4_3.

Abstract

The ever accumulating wealth of knowledge about protein interactions and the domain architecture of involved proteins in different organisms offers ways to understand the intricate interplay between interactome and proteome. Ultimately, the combination of these sources of information will allow the prediction of interactions among proteins where only domain composition is known. Based on the currently available protein-protein interaction and domain data of Saccharomyces cerevisiae and Drosophila melanogaster we introduce a novel method, Maximum Specificity Set Cover (MSSC), to predict potential protein-protein interactions. Utilizing interactions and domain architectures of domains as training sets, this algorithm employs a set cover approach to partition domain pairs, which allows the explanation of the underlying protein interaction to the largest degree of specificity. While MSSC in its basic version only considers domain pairs as the driving force between interactions, we also modified the algorithm to account for combinations of more than two domains that govern a protein-protein interaction. This approach allows us to predict the previously unknown protein-protein interactions in S. cerevisiae and D. melanogaster, with a degree of sensitivity and specificity that clearly outscores other approaches. As a proof of concept we also observe high levels of co-expression and decreasing GO distances between interacting proteins. Although our results are very encouraging, we observe that the quality of predictions significantly depends on the quality of interactions, which were utilized as the training set of the algorithm. The algorithm is part of a Web portal available at http://ppi.cse.nd.edu .

摘要

关于不同生物体中蛋白质相互作用以及相关蛋白质的结构域架构的知识不断积累,为理解相互作用组和蛋白质组之间复杂的相互作用提供了途径。最终,这些信息来源的结合将能够预测仅知道结构域组成的蛋白质之间的相互作用。基于目前可用的酿酒酵母和黑腹果蝇的蛋白质 - 蛋白质相互作用及结构域数据,我们引入了一种新方法——最大特异性集覆盖(MSSC)来预测潜在的蛋白质 - 蛋白质相互作用。该算法利用结构域的相互作用和结构域架构作为训练集,采用集覆盖方法对结构域对进行划分,从而在最大程度的特异性上解释潜在的蛋白质相互作用。虽然基本版本的MSSC仅将结构域对视为相互作用的驱动力,但我们也对算法进行了修改,以考虑控制蛋白质 - 蛋白质相互作用的两个以上结构域的组合。这种方法使我们能够预测酿酒酵母和黑腹果蝇中先前未知的蛋白质 - 蛋白质相互作用,其灵敏度和特异性程度明显优于其他方法。作为概念验证,我们还观察到相互作用蛋白质之间的共表达水平很高且基因本体(GO)距离减小。尽管我们的结果非常令人鼓舞,但我们发现预测质量显著取决于用作算法训练集的相互作用的质量。该算法是一个网络门户(http://ppi.cse.nd.edu )的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验