Suppr超能文献

用 Smith-Martin 和细胞类型模型来解释 CFSE 获得的体外 B 细胞分裂历史。

Interpreting CFSE obtained division histories of B cells in vitro with Smith-Martin and cyton type models.

机构信息

Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.

出版信息

Bull Math Biol. 2009 Oct;71(7):1649-70. doi: 10.1007/s11538-009-9418-6. Epub 2009 Apr 21.

Abstract

The fluorescent dye carboxyfluorescin diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell division. We derive in analytic form the number of cells in each division class as a function of time using the cyton approach that utilizes independent stochastic distributions for the time to divide and the time to die. We confirm that our analytic form for the number of cells in each division class is consistent with the numerical solution of a set of delay differential equations representing the generalized Smith-Martin model with cell death rates depending on the division class. Choosing the distribution of time to the first division to fit thymidine labeling data for B cells stimulated in vitro with lipopolysaccharide (LPS) and either with or without interleukin-4 (IL-4), we fit CFSE data to determine the dependence of B cell kinetic parameters on the presence of IL-4. We find when IL-4 is present, a greater proportion of cells are recruited into division with a longer average time to first division. The most profound effect of the presence of IL-4 was decreased death rates for smaller division classes, which supports a role of IL-4 in the protection of B cells from apoptosis.

摘要

荧光染料羧基荧光素二乙酸琥珀酰亚胺酯 (CFSE) 根据每个细胞经历的分裂次数(即其分裂类)将增殖细胞群体分类成不同的组。放射性胸苷脉冲标记为确定首次细胞分裂时间的分布提供了一种手段。我们利用利用分裂时间和死亡时间的独立随机分布的细胞周期方法,以解析形式推导出每个分裂类别的细胞数量随时间的变化。我们确认,我们的每个分裂类别的细胞数量的解析形式与表示具有依赖于分裂类别的细胞死亡率的广义 Smith-Martin 模型的一组时滞微分方程的数值解是一致的。通过选择首次分裂时间的分布来拟合体外用脂多糖 (LPS) 刺激的 B 细胞的胸苷标记数据,并拟合 CFSE 数据以确定 B 细胞动力学参数对 IL-4 存在的依赖性。我们发现,当存在 IL-4 时,更多比例的细胞被招募到具有更长平均首次分裂时间的分裂中。IL-4 存在的最显著影响是较小分裂类别的死亡速率降低,这支持了 IL-4 在保护 B 细胞免受细胞凋亡中的作用。

相似文献

1
Interpreting CFSE obtained division histories of B cells in vitro with Smith-Martin and cyton type models.
Bull Math Biol. 2009 Oct;71(7):1649-70. doi: 10.1007/s11538-009-9418-6. Epub 2009 Apr 21.
2
Modeling T cell proliferation and death in vitro based on labeling data: generalizations of the Smith-Martin cell cycle model.
Bull Math Biol. 2008 Jan;70(1):21-44. doi: 10.1007/s11538-007-9239-4. Epub 2007 Aug 15.
3
Estimating lymphocyte division and death rates from CFSE data.
Bull Math Biol. 2006 Jul;68(5):1011-31. doi: 10.1007/s11538-006-9094-8. Epub 2006 May 16.
5
Quantifying cell turnover using CFSE data.
J Immunol Methods. 2005 Mar;298(1-2):183-200. doi: 10.1016/j.jim.2005.01.011.
6
Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE).
Proc Biol Sci. 2006 May 7;273(1590):1165-71. doi: 10.1098/rspb.2005.3432.
9
Evaluation of multitype mathematical models for CFSE-labeling experiment data.
Bull Math Biol. 2012 Feb;74(2):300-26. doi: 10.1007/s11538-011-9668-y. Epub 2011 Jun 17.
10
Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution.
J Immunol Methods. 2000 Sep 21;243(1-2):147-54. doi: 10.1016/s0022-1759(00)00231-3.

引用本文的文献

1
A mean-field description for the expansion kinetics of activated T cell populations.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2305774120. doi: 10.1073/pnas.2305774120. Epub 2023 Nov 1.
2
Cyton2: A Model of Immune Cell Population Dynamics That Includes Familial Instructional Inheritance.
Front Bioinform. 2021 Oct 26;1:723337. doi: 10.3389/fbinf.2021.723337. eCollection 2021.
3
Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division.
J Math Biol. 2014 Dec;69(6-7):1547-83. doi: 10.1007/s00285-013-0741-z. Epub 2013 Dec 13.
4
Asymmetry of Cell Division in CFSE-Based Lymphocyte Proliferation Analysis.
Front Immunol. 2013 Sep 2;4:264. doi: 10.3389/fimmu.2013.00264.
5
Quantifying T lymphocyte turnover.
J Theor Biol. 2013 Jun 21;327:45-87. doi: 10.1016/j.jtbi.2012.12.025. Epub 2013 Jan 9.
6
Understanding natural killer cell regulation by mathematical approaches.
Front Immunol. 2012 Dec 12;3:359. doi: 10.3389/fimmu.2012.00359. eCollection 2012.
7
Evaluation of multitype mathematical models for CFSE-labeling experiment data.
Bull Math Biol. 2012 Feb;74(2):300-26. doi: 10.1007/s11538-011-9668-y. Epub 2011 Jun 17.
8
Stochastic models of lymphocyte proliferation and death.
PLoS One. 2010 Sep 30;5(9):e12775. doi: 10.1371/journal.pone.0012775.
9
Estimation of cell proliferation dynamics using CFSE data.
Bull Math Biol. 2011 Jan;73(1):116-50. doi: 10.1007/s11538-010-9524-5. Epub 2010 Mar 3.

本文引用的文献

2
Modeling T cell proliferation and death in vitro based on labeling data: generalizations of the Smith-Martin cell cycle model.
Bull Math Biol. 2008 Jan;70(1):21-44. doi: 10.1007/s11538-007-9239-4. Epub 2007 Aug 15.
5
A model of immune regulation as a consequence of randomized lymphocyte division and death times.
Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5032-7. doi: 10.1073/pnas.0700026104. Epub 2007 Mar 14.
6
Estimating lymphocyte division and death rates from CFSE data.
Bull Math Biol. 2006 Jul;68(5):1011-31. doi: 10.1007/s11538-006-9094-8. Epub 2006 May 16.
7
Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE).
Proc Biol Sci. 2006 May 7;273(1590):1165-71. doi: 10.1098/rspb.2005.3432.
8
Quantifying cell turnover using CFSE data.
J Immunol Methods. 2005 Mar;298(1-2):183-200. doi: 10.1016/j.jim.2005.01.011.
10
The Bcl-2 family: roles in cell survival and oncogenesis.
Oncogene. 2003 Nov 24;22(53):8590-607. doi: 10.1038/sj.onc.1207102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验