Suppr超能文献

表观遗传学与癌症,第二届国际癌症研究机构会议,法国里昂,2007年12月6日至7日

Epigenetics and cancer, 2nd IARC meeting, Lyon, France, 6 and 7 December 2007.

作者信息

Lambert Marie-Pierre, Herceg Zdenko

机构信息

Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France.

出版信息

Mol Oncol. 2008 Jun;2(1):33-40. doi: 10.1016/j.molonc.2008.03.005. Epub 2008 Mar 27.

Abstract

It is becoming widely accepted that epigenetic alterations are universally present in human malignancies and that cancer is as much a disease of abnormal epigenetics as it is a genetic disease. The potential utility of epigenetics and epigenomics in cancer research and cancer control is highlighted by the fact that many funding agencies put cancer epigenetics on the priority list. The goal of this meeting, held at the offices of the International Agency for Research on Cancer in Lyon, France, 6 and 7 December 2007, was to discuss recent conceptual and technological advances in cancer epigenetics and epigenomics, the future research needs in the field, and their implications for early detection, risk assessment and prevention of cancer. While epigenetics has been historically linked to phenomena that do not follow normal genetic principles of heritability, recent mechanistic advances have begun to change our understanding of complex diseases including cancer, traditionally viewed as genetic in origin. It is now known that epigenetic mechanisms play critical roles in regulation of many cellular functions and their deregulation may disrupt the control of fundamental processes leading to tumour formation. A flurry of screening and functional studies revealed that most key processes found in cancer cells, such as silencing of tumour suppressor genes, activation of oncogenes, aberrant cell cycle processes, defects in DNA repair, and deregulation of cell death, can be triggered by epigenetic deregulation. Two important features that distinguish epigenetic changes from genetic alterations are the gradual appearance and reversibility of epigenetic events. These features make epigenetic alterations an attractive target for therapeutic intervention and the development of preventive strategies. For example, aberrant patterns of DNA methylation and histone acetylation and methylation can be targeted by drugs aiming to re-activate epigenetically silenced genes. Until now, most studies on epigenetic changes in cancer were generally focused on specific genes. However, this meeting also stressed the need to take advantage of recent progress in epigenomics and emergence of powerful technologies for detection of epigenetic changes in high throughput and genome-wide settings. This may further advance our capacity to evaluate the contribution of epigenetic changes induced by environmental epimutagens to human cancer. This information may prove critical for the design of efficient strategies for early diagnosis, therapy, and prevention of cancer.

摘要

表观遗传改变普遍存在于人类恶性肿瘤中,并且癌症在很大程度上是一种异常表观遗传学疾病,就如同它是一种基因疾病一样,这一观点正逐渐被广泛接受。许多资助机构将癌症表观遗传学列入优先事项清单,这凸显了表观遗传学和表观基因组学在癌症研究及癌症控制中的潜在效用。本次会议于2007年12月6日和7日在法国里昂的国际癌症研究机构办公室举行,其目的是讨论癌症表观遗传学和表观基因组学领域近期的概念和技术进展、该领域未来的研究需求,以及它们对癌症早期检测、风险评估和预防的影响。虽然表观遗传学在历史上一直与那些不遵循正常遗传遗传原则的现象相关联,但最近的机制进展已开始改变我们对包括癌症在内的复杂疾病的理解,传统上认为癌症起源于基因。现在已知表观遗传机制在许多细胞功能的调节中起着关键作用,其失调可能会扰乱对导致肿瘤形成基本过程的控制。一系列筛查和功能研究表明,癌细胞中发现的大多数关键过程,如肿瘤抑制基因的沉默、癌基因的激活、异常的细胞周期过程、DNA修复缺陷以及细胞死亡失调,都可能由表观遗传失调引发。表观遗传变化与基因改变的两个重要区别特征是表观遗传事件的逐渐出现和可逆性。这些特征使表观遗传改变成为治疗干预和预防策略开发的有吸引力的靶点。例如,旨在重新激活表观遗传沉默基因的药物可以靶向DNA甲基化、组蛋白乙酰化和甲基化的异常模式。到目前为止,大多数关于癌症表观遗传变化的研究通常集中在特定基因上。然而,本次会议还强调了利用表观基因组学的最新进展以及在高通量和全基因组环境中检测表观遗传变化的强大技术出现的必要性。这可能会进一步提高我们评估环境表观诱变剂诱导的表观遗传变化对人类癌症贡献的能力。这些信息对于设计有效的癌症早期诊断、治疗和预防策略可能至关重要。

相似文献

1
Epigenetics and cancer, 2nd IARC meeting, Lyon, France, 6 and 7 December 2007.
Mol Oncol. 2008 Jun;2(1):33-40. doi: 10.1016/j.molonc.2008.03.005. Epub 2008 Mar 27.
2
Compendium of aberrant DNA methylation and histone modifications in cancer.
Biochem Biophys Res Commun. 2014 Dec 5;455(1-2):3-9. doi: 10.1016/j.bbrc.2014.08.140. Epub 2014 Sep 4.
3
Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors.
Mutagenesis. 2007 Mar;22(2):91-103. doi: 10.1093/mutage/gel068. Epub 2007 Feb 6.
5
Epigenetic mechanisms and cancer: an interface between the environment and the genome.
Epigenetics. 2011 Jul;6(7):804-19. doi: 10.4161/epi.6.7.16262.
6
Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation.
Carcinogenesis. 2013 Sep;34(9):1955-67. doi: 10.1093/carcin/bgt212. Epub 2013 Jun 7.
7
Cancer chemoprevention and nutriepigenetics: state of the art and future challenges.
Top Curr Chem. 2013;329:73-132. doi: 10.1007/128_2012_360.
8
Cancer epigenomics: DNA methylomes and histone-modification maps.
Nat Rev Genet. 2007 Apr;8(4):286-98. doi: 10.1038/nrg2005. Epub 2007 Mar 6.
9
Epigenetically Active Drugs Inhibiting DNA Methylation and Histone Deacetylation.
Curr Pharm Des. 2017;23(8):1167-1174. doi: 10.2174/1381612822666161021110827.
10
Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome.
Mutat Res. 2011 May-Jun;727(3):55-61. doi: 10.1016/j.mrrev.2011.04.001. Epub 2011 Apr 15.

引用本文的文献

1
3
LINE-1 Methylation Patterns as a Predictor of Postmolar Gestational Trophoblastic Neoplasia.
Biomed Res Int. 2015;2015:421747. doi: 10.1155/2015/421747. Epub 2015 Sep 13.
4
Colorectal and Prostate Cancer Risk in Diabetes: Metformin, an Actor behind the Scene.
J Cancer. 2014 Oct 9;5(9):736-44. doi: 10.7150/jca.9726. eCollection 2014.
5
A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors.
Invest New Drugs. 2014 Apr;32(2):323-9. doi: 10.1007/s10637-013-0035-8. Epub 2013 Oct 10.
7
Spheres derived from lung adenocarcinoma pleural effusions: molecular characterization and tumor engraftment.
PLoS One. 2011;6(7):e21320. doi: 10.1371/journal.pone.0021320. Epub 2011 Jul 18.

本文引用的文献

1
G9a histone methyltransferase contributes to imprinting in the mouse placenta.
Mol Cell Biol. 2008 Feb;28(3):1104-13. doi: 10.1128/MCB.01111-07. Epub 2007 Nov 26.
2
Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18654-9. doi: 10.1073/pnas.0704652104. Epub 2007 Nov 14.
3
Epigenetic stability of embryonic stem cells and developmental potential.
Trends Biotechnol. 2007 Dec;25(12):556-62. doi: 10.1016/j.tibtech.2007.09.003. Epub 2007 Nov 5.
4
Orchestration of chromatin-based processes: mind the TRRAP.
Oncogene. 2007 Aug 13;26(37):5358-72. doi: 10.1038/sj.onc.1210605.
5
Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia.
Cell. 2007 Jun 1;129(5):879-90. doi: 10.1016/j.cell.2007.03.043.
6
Cancer epigenomics: DNA methylomes and histone-modification maps.
Nat Rev Genet. 2007 Apr;8(4):286-98. doi: 10.1038/nrg2005. Epub 2007 Mar 6.
7
Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.
Nat Genet. 2007 Apr;39(4):457-66. doi: 10.1038/ng1990. Epub 2007 Mar 4.
8
Inheritance of a cancer-associated MLH1 germ-line epimutation.
N Engl J Med. 2007 Feb 15;356(7):697-705. doi: 10.1056/NEJMoa064522.
9
Differential histone modifications mark mouse imprinting control regions during spermatogenesis.
EMBO J. 2007 Feb 7;26(3):720-9. doi: 10.1038/sj.emboj.7601513. Epub 2007 Jan 25.
10
Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer.
Nat Genet. 2007 Feb;39(2):232-6. doi: 10.1038/ng1950. Epub 2006 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验