Suppr超能文献

大麻素CB1受体的跨膜螺旋结构域

Transmembrane helical domain of the cannabinoid CB1 receptor.

作者信息

Shim Joong-Youn

机构信息

J. L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.

出版信息

Biophys J. 2009 Apr 22;96(8):3251-62. doi: 10.1016/j.bpj.2008.12.3934.

Abstract

Brain cannabinoid (CB(1)) receptors are G-protein coupled receptors and belong to the rhodopsin-like subfamily. A homology model of the inactive state of the CB(1) receptor was constructed using the x-ray structure of beta(2)-adrenergic receptor (beta(2)AR) as the template. We used 105 ns duration molecular-dynamics simulations of the CB(1) receptor embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer to gain some insight into the structure and function of the CB(1) receptor. As judged from the root mean-square deviations combined with the detailed structural analyses, the helical bundle of the CB(1) receptor appears to be fully converged in 50 ns of the simulation. The results reveal that the helical bundle structure of the CB(1) receptor maintains a topology quite similar to the x-ray structures of G-protein coupled receptors overall. It is also revealed that the CB(1) receptor is stabilized by the formation of extensive, water-mediated H-bond networks, aromatic stacking interactions, and receptor-lipid interactions within the helical core region. It is likely that these interactions, which are often specific to functional motifs, including the S(N)LAxAD, D(E)RY, CWxP, and NPxxY motifs, are the molecular constraints imposed on the inactive state of the CB(1) receptor. It appears that disruption of these specific interactions is necessary to release the molecular constraints to achieve a conformational change of the receptor suitable for G-protein activation.

摘要

脑大麻素(CB(1))受体是G蛋白偶联受体,属于视紫红质样亚家族。以β2 -肾上腺素能受体(β2AR)的X射线结构为模板构建了CB(1)受体非活性状态的同源模型。我们对嵌入1 -棕榈酰 - 2 -油酰 - sn -甘油 - 3 -磷酸胆碱(POPC)双层中的CB(1)受体进行了105纳秒的分子动力学模拟,以深入了解CB(1)受体的结构和功能。从均方根偏差结合详细的结构分析判断,CB(1)受体的螺旋束在模拟的50纳秒内似乎完全收敛。结果表明,CB(1)受体的螺旋束结构总体上保持与G蛋白偶联受体的X射线结构非常相似的拓扑结构。还发现CB(1)受体通过在螺旋核心区域形成广泛的水介导氢键网络、芳香族堆积相互作用和受体 - 脂质相互作用而得以稳定。这些相互作用通常特定于包括S(N)LAxAD、D(E)RY、CWxP和NPxxY基序在内的功能基序,很可能是施加在CB(1)受体非活性状态上的分子限制。似乎破坏这些特定相互作用对于释放分子限制以实现适合G蛋白激活的受体构象变化是必要的。

相似文献

1
Transmembrane helical domain of the cannabinoid CB1 receptor.
Biophys J. 2009 Apr 22;96(8):3251-62. doi: 10.1016/j.bpj.2008.12.3934.
3
Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR.
J Mol Model. 2011 Sep;17(9):2353-66. doi: 10.1007/s00894-011-0986-7. Epub 2011 Mar 2.
6
Lipid bilayer molecular dynamics study of lipid-derived agonists of the putative cannabinoid receptor, GPR55.
Chem Phys Lipids. 2011 Feb;164(2):131-43. doi: 10.1016/j.chemphyslip.2010.12.003. Epub 2010 Dec 24.
8
In silico investigation of interactions between human cannabinoid receptor-1 and its antagonists.
J Mol Model. 2012 Aug;18(8):3831-45. doi: 10.1007/s00894-012-1381-8. Epub 2012 Mar 9.
9
Influence of lipid composition on the structural stability of g-protein coupled receptor.
Chem Pharm Bull (Tokyo). 2013;61(4):426-37. doi: 10.1248/cpb.c12-01059.

引用本文的文献

1
Structural and functional insights into the G protein-coupled receptors: CB1 and CB2.
Biochem Soc Trans. 2023 Aug 31;51(4):1533-1543. doi: 10.1042/BST20221316.
2
Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation.
Chem Rev. 2019 May 8;119(9):6086-6161. doi: 10.1021/acs.chemrev.8b00608. Epub 2019 Apr 12.
3
Effect of Temporal Expression of Integral Membrane Proteins by Baculovirus Expression Vector System.
Mol Biotechnol. 2018 Aug;60(8):576-584. doi: 10.1007/s12033-018-0099-y.
5
IRAK4 and TLR3 Sequence Variants may Alter Breast Cancer Risk among African-American Women.
Front Immunol. 2013 Oct 29;4:338. doi: 10.3389/fimmu.2013.00338. eCollection 2013.
8
Multiple functions of endocannabinoid signaling in the brain.
Annu Rev Neurosci. 2012;35:529-58. doi: 10.1146/annurev-neuro-062111-150420. Epub 2012 Apr 17.
9
In silico investigation of interactions between human cannabinoid receptor-1 and its antagonists.
J Mol Model. 2012 Aug;18(8):3831-45. doi: 10.1007/s00894-012-1381-8. Epub 2012 Mar 9.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Structure of a beta1-adrenergic G-protein-coupled receptor.
Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.
3
Crystal structure of the ligand-free G-protein-coupled receptor opsin.
Nature. 2008 Jul 10;454(7201):183-7. doi: 10.1038/nature07063. Epub 2008 Jun 18.
4
Mapping the structural requirements in the CB1 cannabinoid receptor transmembrane helix II for signal transduction.
J Pharmacol Exp Ther. 2008 Apr;325(1):341-8. doi: 10.1124/jpet.107.133256. Epub 2008 Jan 3.
5
Buried water molecules in helical transmembrane proteins.
Protein Sci. 2008 Feb;17(2):293-8. doi: 10.1110/ps.073237508. Epub 2007 Dec 20.
6
High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.
Science. 2007 Nov 23;318(5854):1258-65. doi: 10.1126/science.1150577. Epub 2007 Oct 25.
7
Clustal W and Clustal X version 2.0.
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.
8
Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment.
Biochemistry. 2007 Aug 14;46(32):9208-14. doi: 10.1021/bi7008773. Epub 2007 Jul 21.
9
Helix 8 Leu in the CB1 cannabinoid receptor contributes to selective signal transduction mechanisms.
J Biol Chem. 2007 Aug 24;282(34):25100-13. doi: 10.1074/jbc.M703388200. Epub 2007 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验