Wang Wenming, Shao Zongze, Liu Yanjun, Wang Gejiao
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
The Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China.
Microbiology (Reading). 2009 Jun;155(Pt 6):1989-1996. doi: 10.1099/mic.0.024141-0. Epub 2009 Apr 21.
A deep-sea manganese-oxidizing bacterium, Brachybacterium sp. strain Mn32, showed high Mn(II) resistance (MIC 55 mM) and Mn(II)-oxidizing/removing abilities. Strain Mn32 removed Mn(II) by two pathways: (1) oxidizing soluble Mn(II) to insoluble biogenic Mn oxides - birnessite (delta-MnO(2) group) and manganite (gamma-MnOOH); (2) the biogenic Mn oxides further adsorb more Mn(II) from the culture. The generated biogenic Mn oxides surround the cell surfaces of strain Mn32 and provide a high capacity to adsorb Zn(II) and Ni(II). Mn(II) oxidation by strain Mn32 was inhibited by both sodium azide and o-phenanthroline, suggesting the involvement of a metalloenzyme which was induced by Mn(II). X-ray diffraction analysis showed that the crystal structures of the biogenic Mn oxides were different from those of commercial pyrolusite (beta-MnO(2) group) and fresh chemically synthesized vernadite (delta-MnO(2) group). The biogenic Mn oxides generated by strain Mn32 showed two to three times higher Zn(II) and Ni(II) adsorption abilities than commercial and fresh synthetic MnO(2). The crystal structure and the biogenic MnO(2) types may be important factors for the high heavy metal adsorption ability of strain Mn32. This study provides potential applications of a new marine Mn(II)-oxidizing bacterium in heavy metal bioremediation and increases our basic knowledge of microbial manganese oxidation mechanisms.
一种深海锰氧化细菌——短杆菌属菌株Mn32,表现出高抗锰(II)能力(最低抑菌浓度为55 mM)以及锰(II)氧化/去除能力。菌株Mn32通过两种途径去除锰(II):(1)将可溶性锰(II)氧化为不溶性生物源锰氧化物——水钠锰矿(δ-MnO₂族)和锰矿(γ-MnOOH);(2)生物源锰氧化物进一步从培养物中吸附更多的锰(II)。生成的生物源锰氧化物围绕在菌株Mn32的细胞表面,并具有高吸附锌(II)和镍(II)的能力。叠氮化钠和邻菲罗啉均抑制菌株Mn32的锰(II)氧化,这表明有金属酶参与其中,且该金属酶由锰(II)诱导产生。X射线衍射分析表明,生物源锰氧化物的晶体结构不同于商业软锰矿(β-MnO₂族)和新鲜化学合成的纤钠锰矿(δ-MnO₂族)。菌株Mn32生成的生物源锰氧化物对锌(II)和镍(II)的吸附能力比商业和新鲜合成的MnO₂高两到三倍。晶体结构和生物源MnO₂类型可能是菌株Mn32具有高重金属吸附能力的重要因素。本研究为一种新型海洋锰(II)氧化细菌在重金属生物修复中的潜在应用提供了依据,并增加了我们对微生物锰氧化机制的基础知识。