Graduate School of Nanobioscience, Yokohama City University.
Microbes Environ. 2024;39(2). doi: 10.1264/jsme2.ME23102.
Mn(II)-oxidizing microorganisms are considered to play significant roles in the natural geochemical cycles of Mn and other heavy metals because the insoluble biogenic Mn oxides (BMOs) that are produced by these microorganisms adsorb other dissolved heavy metals and immobilize them as precipitates. In the present study, a new Mn(II)-oxidizing fungal strain belonging to the ascomycete genus Periconia, a well-studied plant-associating fungal genus with Mn(II)-oxidizing activity that has not yet been exami-ned in detail, was isolated from natural groundwater outflow sediment. This isolate, named strain TS-2, was confirmed to oxidize dissolved Mn(II) and produce insoluble BMOs that formed characteristic, separately-located nodules on their hyphae while leaving major areas of the hyphae free from encrustation. These BMO nodules also adsorbed and immobilized dissolved Cu(II), a model analyte of heavy metals, as evidenced by elemental mapping ana-lyses of fungal hyphae-BMO assemblages using a scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX). Analyses of functional genes within the whole genome of strain TS-2 further revealed the presence of multiple genes predicted to encode laccases/multicopper oxidases that were potentially responsible for Mn(II) oxidation by this strain. The formation of BMO nodules may have functioned to prevent the complete encrustation of fungal hyphae, thereby enabling the control of heavy metal concentrations in their local microenvironments while maintaining hyphal functionality. The present results will expand our knowledge of the physiological and morphological traits of Mn(II)-oxidizing Periconia, which may affect the natural cycle of heavy metals through their immobilization.
锰(II)氧化微生物被认为在锰和其他重金属的自然地球化学循环中发挥重要作用,因为这些微生物产生的不溶性生物锰氧化物 (BMO) 吸附其他溶解的重金属并将其固定为沉淀物。在本研究中,从天然地下水流出沉积物中分离到一种属于子囊菌纲 Periconia 的新型锰(II)氧化真菌菌株,该真菌是一种研究较为深入的与植物相关的真菌属,具有锰(II)氧化活性,但尚未进行详细研究。该分离株命名为 TS-2 菌株,被证实能够氧化溶解的 Mn(II)并产生不溶性 BMO,这些 BMO 在其菌丝上形成特征性的单独定位的结节,而菌丝的大部分区域则没有结壳。这些 BMO 结节还吸附和固定溶解的 Cu(II),Cu(II)是重金属的模型分析物,这可以通过使用带有能量色散 X 射线光谱 (SEM-EDX) 的扫描电子显微镜对真菌菌丝体-BMO 组合进行元素映射分析来证明。对 TS-2 菌株全基因组内的功能基因进行分析进一步表明,存在多个预测编码漆酶/多铜氧化酶的基因,这些基因可能负责该菌株的 Mn(II)氧化。BMO 结节的形成可能有助于防止真菌菌丝完全结壳,从而能够控制其局部微环境中的重金属浓度,同时保持菌丝的功能。本研究结果将扩展我们对锰(II)氧化 Periconia 的生理和形态特征的认识,这可能通过其固定作用影响重金属的自然循环。