Suppr超能文献

来自食丁陶厄氏菌(原“食丁假单胞菌”)的可溶性丁烷单加氧酶的动力学特性

Kinetic characterization of the soluble butane monooxygenase from Thauera butanivorans, formerly 'Pseudomonas butanovora'.

作者信息

Cooley Richard B, Dubbels Bradley L, Sayavedra-Soto Luis A, Bottomley Peter J, Arp Daniel J

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.

出版信息

Microbiology (Reading). 2009 Jun;155(Pt 6):2086-2096. doi: 10.1099/mic.0.028175-0. Epub 2009 Apr 21.

Abstract

Soluble butane monooxygenase (sBMO), a three-component di-iron monooxygenase complex expressed by the C(2)-C(9) alkane-utilizing bacterium Thauera butanivorans, was kinetically characterized by measuring substrate specificities for C(1)-C(5) alkanes and product inhibition profiles. sBMO has high sequence homology with soluble methane monooxygenase (sMMO) and shares a similar substrate range, including gaseous and liquid alkanes, aromatics, alkenes and halogenated xenobiotics. Results indicated that butane was the preferred substrate (defined by k(cat) : K(m) ratios). Relative rates of oxidation for C(1)-C(5) alkanes differed minimally, implying that substrate specificity is heavily influenced by differences in substrate K(m) values. The low micromolar K(m) for linear C(2)-C(5) alkanes and the millimolar K(m) for methane demonstrate that sBMO is two to three orders of magnitude more specific for physiologically relevant substrates of T. butanivorans. Methanol, the product of methane oxidation and also a substrate itself, was found to have similar K(m) and k(cat) values to those of methane. This inability to kinetically discriminate between the C(1) alkane and C(1) alcohol is observed as a steady-state concentration of methanol during the two-step oxidation of methane to formaldehyde by sBMO. Unlike methanol, alcohols with chain length C(2)-C(5) do not compete effectively with their respective alkane substrates. Results from product inhibition experiments suggest that the geometry of the active site is optimized for linear molecules four to five carbons in length and is influenced by the regulatory protein component B (butane monooxygenase regulatory component; BMOB). The data suggest that alkane oxidation by sBMO is highly specialized for the turnover of C(3)-C(5) alkanes and the release of their respective alcohol products. Additionally, sBMO is particularly efficient at preventing methane oxidation during growth on linear alkanes > or =C(2,) despite its high sequence homology with sMMO. These results represent, to the best of our knowledge, the first kinetic in vitro characterization of the closest known homologue of sMMO.

摘要

可溶性丁烷单加氧酶(sBMO)是一种由利用C(2)-C(9)烷烃的细菌Thauera butanivorans表达的三组分二铁单加氧酶复合物,通过测量其对C(1)-C(5)烷烃的底物特异性和产物抑制谱对其进行了动力学表征。sBMO与可溶性甲烷单加氧酶(sMMO)具有高度的序列同源性,并且具有相似的底物范围,包括气态和液态烷烃、芳烃、烯烃和卤代外源性物质。结果表明丁烷是首选底物(由k(cat):K(m)比值确定)。C(1)-C(5)烷烃的相对氧化速率差异极小,这意味着底物特异性受底物K(m)值差异的严重影响。线性C(2)-C(5)烷烃的低微摩尔K(m)值和甲烷的毫摩尔K(m)值表明,sBMO对Thauera butanivorans的生理相关底物的特异性要高两到三个数量级。甲醇是甲烷氧化的产物,本身也是一种底物,其K(m)值和k(cat)值与甲烷相似。在sBMO将甲烷两步氧化为甲醛的过程中,观察到在稳态甲醇浓度下,无法在动力学上区分C(1)烷烃和C(1)醇。与甲醇不同,链长为C(2)-C(5)的醇不能与其各自的烷烃底物有效竞争。产物抑制实验结果表明,活性位点的几何结构针对长度为四到五个碳的线性分子进行了优化,并且受调节蛋白组分B(丁烷单加氧酶调节组分;BMOB)的影响。数据表明,sBMO对烷烃的氧化高度专门用于C(3)-C(5)烷烃的周转及其各自醇产物的释放。此外,尽管sBMO与sMMO具有高度的序列同源性,但在以≥C(2)的线性烷烃为生长底物时,sBMO在防止甲烷氧化方面特别有效。据我们所知,这些结果代表了对已知最接近sMMO同源物的首次体外动力学表征。

相似文献

1
Kinetic characterization of the soluble butane monooxygenase from Thauera butanivorans, formerly 'Pseudomonas butanovora'.
Microbiology (Reading). 2009 Jun;155(Pt 6):2086-2096. doi: 10.1099/mic.0.028175-0. Epub 2009 Apr 21.
3
Molecular analysis of the soluble butane monooxygenase from 'Pseudomonas butanovora'.
Microbiology (Reading). 2002 Nov;148(Pt 11):3617-3629. doi: 10.1099/00221287-148-11-3617.
5
Propionate inactivation of butane monooxygenase activity in 'Pseudomonas butanovora': biochemical and physiological implications.
Microbiology (Reading). 2007 Nov;153(Pt 11):3722-3729. doi: 10.1099/mic.0.2007/008441-0.
6
Product and product-independent induction of butane oxidation in Pseudomonas butanovora.
FEMS Microbiol Lett. 2005 Sep 1;250(1):111-6. doi: 10.1016/j.femsle.2005.06.058.
7
Thauera butanivorans sp. nov., a C2-C9 alkane-oxidizing bacterium previously referred to as 'Pseudomonas butanovora'.
Int J Syst Evol Microbiol. 2009 Jul;59(Pt 7):1576-8. doi: 10.1099/ijs.0.000638-0. Epub 2009 Jun 15.
10
Butane metabolism by butane-grown 'Pseudomonas butanovora'.
Microbiology (Reading). 1999 May;145 ( Pt 5):1173-1180. doi: 10.1099/13500872-145-5-1173.

引用本文的文献

1
Development of a whole-cell biosensor for ethylene oxide and ethylene.
Microb Biotechnol. 2024 Jun;17(6):e14511. doi: 10.1111/1751-7915.14511.
3
More Than a Methanotroph: A Broader Substrate Spectrum for SolV.
Front Microbiol. 2020 Dec 14;11:604485. doi: 10.3389/fmicb.2020.604485. eCollection 2020.
5
Efficient Removal of Butachlor and Change in Microbial Community Structure in Single-Chamber Microbial Fuel Cells.
Int J Environ Res Public Health. 2019 Oct 15;16(20):3897. doi: 10.3390/ijerph16203897.
6
Novel Butane-Oxidizing Bacteria and Diversity of Genes in Puguang Gas Field.
Front Microbiol. 2018 Jul 17;9:1576. doi: 10.3389/fmicb.2018.01576. eCollection 2018.
7
Syntrophic Interactions Within a Butane-Oxidizing Bacterial Consortium Isolated from Puguang Gas Field in China.
Microb Ecol. 2016 Oct;72(3):538-48. doi: 10.1007/s00248-016-0799-4. Epub 2016 Jun 20.
9
Component interactions and electron transfer in toluene/o-xylene monooxygenase.
Biochemistry. 2014 Dec 2;53(47):7368-75. doi: 10.1021/bi500892n. Epub 2014 Nov 17.
10
Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill.
Front Microbiol. 2014 Jul 8;5:332. doi: 10.3389/fmicb.2014.00332. eCollection 2014.

本文引用的文献

1
Thauera butanivorans sp. nov., a C2-C9 alkane-oxidizing bacterium previously referred to as 'Pseudomonas butanovora'.
Int J Syst Evol Microbiol. 2009 Jul;59(Pt 7):1576-8. doi: 10.1099/ijs.0.000638-0. Epub 2009 Jun 15.
2
CD and MCD studies of the effects of component B variant binding on the biferrous active site of methane monooxygenase.
Biochemistry. 2008 Aug 12;47(32):8386-97. doi: 10.1021/bi800818w. Epub 2008 Jul 16.
4
Propionate inactivation of butane monooxygenase activity in 'Pseudomonas butanovora': biochemical and physiological implications.
Microbiology (Reading). 2007 Nov;153(Pt 11):3722-3729. doi: 10.1099/mic.0.2007/008441-0.
5
Characterization of the arene-oxidizing intermediate in ToMOH as a diiron(III) species.
J Am Chem Soc. 2007 Nov 21;129(46):14500-10. doi: 10.1021/ja076121h. Epub 2007 Oct 30.
6
Mutagenesis of the "leucine gate" to explore the basis of catalytic versatility in soluble methane monooxygenase.
Appl Environ Microbiol. 2007 Oct;73(20):6460-7. doi: 10.1128/AEM.00823-07. Epub 2007 Aug 17.
10
n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.
Appl Microbiol Biotechnol. 2007 Jun;75(4):909-19. doi: 10.1007/s00253-007-0892-1. Epub 2007 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验