Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA.
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
Appl Environ Microbiol. 2020 Aug 18;86(17). doi: 10.1128/AEM.01163-20.
Cometabolic degradation plays a prominent role in bioremediation of commingled groundwater contamination (e.g., chlorinated solvents and the solvent stabilizer 1,4-dioxane [dioxane]). In this study, we untangled the diversity and catalytic functions of multicomponent monooxygenases in sp. strain DD4, a Gram-negative propanotroph that is effective in degrading dioxane and 1,1-dichloroethylene (1,1-DCE). Using a combination of knockout mutagenesis and heterologous expression, a toluene monooxygenase (MO) encoded by the gene cluster was unequivocally proved to be the key enzyme responsible for the cometabolism of both dioxane and 1,1-DCE. Interestingly, in addition to utilizing toluene as a primary substrate, this toluene MO can also oxidize propane into 1-propanol. Expression of this toluene MO in DD4 appears inducible by both substrates (toluene and propane) and their primary hydroxylation products (m-cresol, p-cresol, and 1-propanol). These findings coherently explain why DD4 can grow on propane and express toluene MO for active cooxidation of dioxane and 1,1-DCE. Furthermore, upregulation of transcription by 1-propanol underlines the implication potential of using 1-propanol as an alternative auxiliary substrate for DD4 bioaugmentation. The discovery of this toluene MO in DD4 and its degradation and induction versatility can lead to broad applications, spanning from environmental remediation and water treatment to biocatalysis in green chemistry. Toluene MOs have been well recognized given their robust abilities to degrade a variety of environmental pollutants. Built upon previous research efforts, this study ascertained the untapped capability of a toluene MO in DD4 for effective cooxidation of dioxane and 1,1-DCE, two of the most prevailing yet challenging groundwater contaminants. This report also aligns the induction of a toluene MO with nontoxic and commercially accessible chemicals (e.g., propane and 1-propanol), extending its implications in the field of environmental microbiology and beyond.
共代谢降解在混合地下水污染(例如,氯化溶剂和溶剂稳定剂 1,4-二恶烷[二恶烷])的生物修复中起着重要作用。在这项研究中,我们解开了革兰氏阴性丙烷营养菌 sp.菌株 DD4 中多组分单加氧酶的多样性和催化功能,该菌有效降解二恶烷和 1,1-二氯乙烯(1,1-DCE)。使用敲除诱变和异源表达的组合,明确证明由 基因簇编码的甲苯单加氧酶(MO)是负责共代谢二恶烷和 1,1-DCE 的关键酶。有趣的是,除了利用甲苯作为主要底物外,这种甲苯 MO 还可以将丙烷氧化成 1-丙醇。DD4 中这种甲苯 MO 的表达似乎可被两种底物(甲苯和丙烷)及其主要羟化产物(间甲酚、对甲酚和 1-丙醇)诱导。这些发现一致解释了为什么 DD4 可以在丙烷上生长并表达甲苯 MO 以有效共氧化二恶烷和 1,1-DCE。此外,1-丙醇对 转录的上调突出了使用 1-丙醇作为 DD4 生物增强的替代辅助底物的潜在意义。DD4 中发现的这种甲苯 MO 及其降解和诱导多功能性可广泛应用于环境修复和水处理以及绿色化学中的生物催化。甲苯 MO 因其强大的降解各种环境污染物的能力而得到广泛认可。在以前的研究工作的基础上,本研究确定了 DD4 中甲苯 MO 用于有效共氧化二恶烷和 1,1-DCE 的未开发能力,二恶烷和 1,1-DCE 是两种最普遍但最具挑战性的地下水污染物。本报告还将甲苯 MO 的诱导与无毒且可商业获得的化学品(例如丙烷和 1-丙醇)联系起来,扩展了其在环境微生物学领域及其他领域的应用。