Suppr超能文献

一种通过磁化传递率的体素级变化来识别多发性硬化症患者局灶性脱髓鞘和再髓鞘化的灵敏、抗噪声方法。

A sensitive, noise-resistant method for identifying focal demyelination and remyelination in patients with multiple sclerosis via voxel-wise changes in magnetization transfer ratio.

作者信息

Dwyer Michael, Bergsland Niels, Hussein Sara, Durfee Jackie, Wack David, Zivadinov Robert

机构信息

Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, USA.

出版信息

J Neurol Sci. 2009 Jul 15;282(1-2):86-95. doi: 10.1016/j.jns.2009.03.016. Epub 2009 Apr 22.

Abstract

Magnetization transfer imaging (MTI) provides a reliable and histopathologically validated means for identifying important tissue changes in multiple sclerosis (MS), including demyelination and remyelination. However, most approaches to date have been based on a priori regions of interest (ROIs) and have been relatively insensitive to small focal changes or competing processes. More recent techniques have sought to address this through a voxel-wise approach, but have been limited in their detection capabilities by the amount of noise in standard MTR images. To address this issue while remaining sensitive to local changes, we propose the use of the recently introduced threshold-free cluster enhancement (TFCE) technique in combination with a Monte Carlo estimation approach. TFCE is first applied to enhance individual voxels based on their level of local cluster support, and then Monte Carlo estimation is performed to allow meaningful statistical interpretation of the resulting TFCE values. We validated this technique in three complementary ways: healthy control scan-rescan analysis, analysis of a "gold standard" simulated dataset, and analysis of a group of MS patients and healthy volunteers with 1-year longitudinal MRI scans. Scan-rescan analysis demonstrated a very low false-positive rate (1.44 mL increasing and 1.48 mL decreasing at the optimal detection threshold). Simulated dataset analysis yielded an area under receiver-operating characteristic curve of 0.942 (compared to 0.801 for a more conventional voxel-wise thresholding analysis). Finally, analysis of the real subject population showed highly significant differences (p<0.001) in volume of decreasing MTR between patients and controls. The proposed method provides a valuable means for quantifying MS-related tissue changes, particularly demyelination and remyelination, in vivo and without the use of highly complex or experimental MRI acquisition techniques. It improves on the sensitivity of other approaches, and may increase the statistical power of studies investigating the effects of therapy on MRI outcomes in MS.

摘要

磁化传递成像(MTI)为识别多发性硬化症(MS)中的重要组织变化提供了一种可靠且经组织病理学验证的方法,包括脱髓鞘和再髓鞘化。然而,迄今为止的大多数方法都基于先验感兴趣区域(ROI),并且对小的局灶性变化或竞争过程相对不敏感。最近的技术试图通过体素级方法来解决这个问题,但标准磁化传递率(MTR)图像中的噪声量限制了它们的检测能力。为了在保持对局部变化敏感的同时解决这个问题,我们建议将最近引入的无阈值聚类增强(TFCE)技术与蒙特卡罗估计方法结合使用。首先应用TFCE根据局部聚类支持水平增强单个体素,然后进行蒙特卡罗估计以便对所得的TFCE值进行有意义的统计解释。我们通过三种互补方式验证了该技术:健康对照的重扫分析、“金标准”模拟数据集分析以及对一组MS患者和健康志愿者进行的1年纵向MRI扫描分析。重扫分析显示假阳性率非常低(在最佳检测阈值下增加1.44 mL,减少1.48 mL)。模拟数据集分析得出受试者工作特征曲线下面积为0.942(相比之下,更传统的体素级阈值分析为0.801)。最后,对真实受试者群体的分析显示患者和对照之间MTR降低体积存在高度显著差异(p<0.001)。所提出的方法为在体内量化与MS相关的组织变化,特别是脱髓鞘和再髓鞘化,提供了一种有价值的手段,且无需使用高度复杂或实验性的MRI采集技术。它提高了其他方法的灵敏度,并可能增加研究治疗对MS患者MRI结果影响的研究的统计效力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验