National Bureau of Economic Research, Cambridge, MA, USA.
Int J Epidemiol. 2009 Dec;38(6):1599-611. doi: 10.1093/ije/dyp192. Epub 2009 Apr 23.
Estimating the population risk of disease under hypothetical interventions--such as the population risk of coronary heart disease (CHD) were everyone to quit smoking and start exercising or to start exercising if diagnosed with diabetes--may not be possible using standard analytic techniques. The parametric g-formula, which appropriately adjusts for time-varying confounders affected by prior exposures, is especially well suited to estimating effects when the intervention involves multiple factors (joint interventions) or when the intervention involves decisions that depend on the value of evolving time-dependent factors (dynamic interventions). We describe the parametric g-formula, and use it to estimate the effect of various hypothetical lifestyle interventions on the risk of CHD using data from the Nurses' Health Study. Over the period 1982-2002, the 20-year risk of CHD in this cohort was 3.50%. Under a joint intervention of no smoking, increased exercise, improved diet, moderate alcohol consumption and reduced body mass index, the estimated risk was 1.89% (95% confidence interval: 1.46-2.41). We discuss whether the assumptions required for the validity of the parametric g-formula hold in the Nurses' Health Study data. This work represents the first large-scale application of the parametric g-formula in an epidemiologic cohort study.
使用标准分析技术可能无法估算假设干预措施下的疾病人群风险,例如在所有人都戒烟并开始锻炼或在诊断出糖尿病后开始锻炼的情况下,冠心病(CHD)的人群风险。参数 g 公式特别适合估算当干预措施涉及多个因素(联合干预)或干预措施涉及取决于不断变化的时间相关因素的价值的决策时的影响(动态干预)。我们描述了参数 g 公式,并使用它来使用来自护士健康研究的数据估算各种假设生活方式干预对 CHD 风险的影响。在 1982 年至 2002 年期间,该队列的 20 年 CHD 风险为 3.50%。在不吸烟、增加锻炼、改善饮食、适量饮酒和降低体重指数的联合干预下,估计的风险为 1.89%(95%置信区间:1.46-2.41)。我们讨论了在护士健康研究数据中参数 g 公式有效性所需的假设是否成立。这项工作代表了参数 g 公式在流行病学队列研究中的首次大规模应用。