Suppr超能文献

当无法观察到事件暴露时用于估计暴露变化影响的因果推断方法综述

A Review of Causal Inference Methods for Estimating the Effects of Exposure Change When Incident Exposure Is Unobservable.

作者信息

Liu Fangyu, Duchesneau Emilie D, Lund Jennifer L, Jackson John W

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

出版信息

Curr Epidemiol Rep. 2024 Dec;11(4):185-198. doi: 10.1007/s40471-024-00343-5. Epub 2024 Feb 19.

Abstract

PURPOSE OF REVIEW

Research questions on exposure change and health outcomes are both relevant to clinical and policy decision making for public health. Causal inference methods can help investigators answer questions about exposure change when the first or incident exposure is unobserved or not well defined. This review aims to help researchers conceive of helpful causal research questions about exposure change and understand various statistical methods for answering these questions to promote wider adoption of causal inference methods in research on exposure change outside the field of pharmacoepidemiology.

RECENT FINDINGS

Epidemiologic studies examining exposure changes face challenges that can be addressed by causal inference methods, including target trial emulation. However, their application outside the field of pharmacoepidemiology is limited.

SUMMARY

In this review, we (a) illustrate considerations in defining an exposure change and defining the total and joint effects of an exposure change, b) provide practical guidance on trial emulation design, data set-up for statistical analysis; (c) demonstrate four statistical methods that can estimate total and/or joint effects (structural conditional mean models, time-dependent matching, inverse probability weighting, and the parametric g-formula); and (d) compare the advantages and limitations of these statistical methods.

摘要

综述目的

关于暴露变化与健康结果的研究问题,对于公共卫生的临床和政策决策均具有相关性。当首次暴露或新发暴露未被观察到或定义不明确时,因果推断方法可帮助研究人员回答有关暴露变化的问题。本综述旨在帮助研究人员构思有关暴露变化的有益因果研究问题,并理解用于回答这些问题的各种统计方法,以促进因果推断方法在药物流行病学领域之外的暴露变化研究中得到更广泛的应用。

最新发现

研究暴露变化的流行病学研究面临一些可通过因果推断方法(包括目标试验模拟)解决的挑战。然而,它们在药物流行病学领域之外的应用有限。

总结

在本综述中,我们(a)阐述了在定义暴露变化以及定义暴露变化的总体和联合效应时的注意事项,(b)为试验模拟设计、统计分析的数据设置提供实用指导;(c)展示了四种可估计总体和/或联合效应的统计方法(结构条件均值模型、时间依存匹配、逆概率加权和参数化g公式);(d)比较了这些统计方法的优缺点。

相似文献

1
A Review of Causal Inference Methods for Estimating the Effects of Exposure Change When Incident Exposure Is Unobservable.
Curr Epidemiol Rep. 2024 Dec;11(4):185-198. doi: 10.1007/s40471-024-00343-5. Epub 2024 Feb 19.
4
Evidence-based toxicology: a comprehensive framework for causation.
Hum Exp Toxicol. 2005 Apr;24(4):161-201. doi: 10.1191/0960327105ht517oa.
6
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Aug 27;8(8):CD015705. doi: 10.1002/14651858.CD015705.pub2.
9
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.

本文引用的文献

1
Grace periods in comparative effectiveness studies of sustained treatments.
J R Stat Soc Ser A Stat Soc. 2024 Jan 22;187(3):796-810. doi: 10.1093/jrsssa/qnae002. eCollection 2024 Aug.
2
Matching on Generalized Propensity Scores with Continuous Exposures.
J Am Stat Assoc. 2024;119(545):757-772. doi: 10.1080/01621459.2022.2144737. Epub 2022 Dec 12.
3
Are Target Trial Emulations the Gold Standard for Observational Studies?
Epidemiology. 2023 Sep 1;34(5):614-618. doi: 10.1097/EDE.0000000000001636. Epub 2023 May 31.
5
MULTIPLY ROBUST ESTIMATORS OF CAUSAL EFFECTS FOR SURVIVAL OUTCOMES.
Scand Stat Theory Appl. 2022 Sep;49(3):1304-1328. doi: 10.1111/sjos.12561. Epub 2021 Nov 11.
6
Revisiting the g-null Paradox.
Epidemiology. 2022 Jan 1;33(1):114-120. doi: 10.1097/EDE.0000000000001431.
7
The Hazards of Period Specific and Weighted Hazard Ratios.
Stat Biopharm Res. 2020 Jun 23;12(4):518-519. doi: 10.1080/19466315.2020.1755722.
8
gfoRmula: An R Package for Estimating the Effects of Sustained Treatment Strategies via the Parametric g-formula.
Patterns (N Y). 2020 Jun 12;1(3). doi: 10.1016/j.patter.2020.100008. Epub 2020 May 18.
9
Parametric g-formula implementations for causal survival analyses.
Biometrics. 2021 Jun;77(2):740-753. doi: 10.1111/biom.13321. Epub 2020 Jul 6.
10
Matching with time-dependent treatments: A review and look forward.
Stat Med. 2020 Jul 30;39(17):2350-2370. doi: 10.1002/sim.8533. Epub 2020 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验