Botts Ryan T, Homburg Ale Jan, Young Todd R
Department of Mathematical, Information & Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, CA 92106, USA.
KdV Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands, and Department of Mathematics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
Discrete Contin Dyn Syst Ser A. 2012 Aug;32(8):2997-3007. doi: 10.3934/dcds.2012.32.2997.
We study Hopf-Andronov bifurcations in a class of random differential equations (RDEs) with bounded noise. We observe that when an ordinary differential equation that undergoes a Hopf bifurcation is subjected to bounded noise then the bifurcation that occurs involves a discontinuous change in the Minimal Forward Invariant set.
我们研究了一类具有有界噪声的随机微分方程(RDEs)中的霍普夫 - 安德罗诺夫分岔。我们观察到,当一个经历霍普夫分岔的常微分方程受到有界噪声影响时,所发生的分岔涉及最小前向不变集的不连续变化。