Chen Kewei, Reiman Eric M, Huan Zhongdan, Caselli Richard J, Bandy Daniel, Ayutyanont Napatkamon, Alexander Gene E
Banner Alzheimer's Institute and the Banner Good Samaritan PET Center, Phoenix, AZ 85006, USA.
Neuroimage. 2009 Aug 15;47(2):602-10. doi: 10.1016/j.neuroimage.2009.04.053. Epub 2009 Apr 23.
In this article, we introduce a multimodal multivariate network analysis to characterize the linkage between the patterns of information from the same individual's complementary brain images, and illustrate its potential by showing its ability to distinguish older from younger adults with greater power than several previously established methods. Our proposed method uses measurements from every brain voxel in each person's complementary co-registered images and uses the partial least square (PLS) algorithm to form a combined latent variable that maximizes the covariance among all of the combined variables. It represents a new way to calculate the singular value decomposition from the high-dimensional covariance matrix in a computationally feasible way. Analyzing fluorodeoxyglucose positron emission tomography (PET) and volumetric magnetic resonance imaging (MRI) images, this method distinguished 14 older adults from 15 younger adults (p=4e-12) with no overlap between groups, no need to correct for multiple comparisons, and greater power than the univariate Statistical Parametric Mapping (SPM), multimodal SPM or multivariate PLS analysis of either imaging modality alone. This technique has the potential to link patterns of information among any number of complementary images from an individual, to use other kinds of complementary complex datasets besides brain images, and to characterize individual state- or trait-dependent brain patterns in a more powerful way.
在本文中,我们介绍了一种多模态多变量网络分析方法,以表征来自同一个体互补脑图像的信息模式之间的联系,并通过展示其比几种先前建立的方法更强大的区分老年人和年轻人的能力来说明其潜力。我们提出的方法使用每个人互补配准图像中每个脑体素的测量值,并使用偏最小二乘法(PLS)算法形成一个组合潜在变量,使所有组合变量之间的协方差最大化。它代表了一种以计算可行的方式从高维协方差矩阵计算奇异值分解的新方法。通过分析氟脱氧葡萄糖正电子发射断层扫描(PET)和容积磁共振成像(MRI)图像,该方法区分了14名老年人和15名年轻人(p = 4e - 12),两组之间没有重叠,无需进行多重比较校正,并且比单变量统计参数映射(SPM)、多模态SPM或单独对任何一种成像模态进行多变量PLS分析具有更强的能力。这种技术有可能将个体的任意数量互补图像之间的信息模式联系起来,除了脑图像之外还能使用其他类型的互补复杂数据集,并以更强大的方式表征个体状态或特质相关的脑模式。