Suppr超能文献

人类行走的模块化控制:一项模拟研究。

Modular control of human walking: a simulation study.

作者信息

Neptune Richard R, Clark David J, Kautz Steven A

机构信息

Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712, USA.

出版信息

J Biomech. 2009 Jun 19;42(9):1282-7. doi: 10.1016/j.jbiomech.2009.03.009. Epub 2009 Apr 25.

Abstract

Recent evidence suggests that performance of complex locomotor tasks such as walking may be accomplished using a simple underlying organization of co-active muscles, or "modules", which have been assumed to be structured to perform task-specific biomechanical functions. However, no study has explicitly tested whether the modules would actually produce the biomechanical functions associated with them or even produce a well-coordinated movement. In this study, we generated muscle-actuated forward dynamics simulations of normal walking using muscle activation modules (identified using non-negative matrix factorization) as the muscle control inputs to identify the contributions of each module to the biomechanical sub-tasks of walking (i.e., body support, forward propulsion, and leg swing). The simulation analysis showed that a simple neural control strategy involving five muscle activation modules was sufficient to perform the basic sub-tasks of walking. Module 1 (gluteus medius, vasti, and rectus femoris) primarily contributed to body support in early stance while Module 2 (soleus and gastrocnemius) contributed to both body support and propulsion in late stance. Module 3 (rectus femoris and tibialis anterior) acted to decelerate the leg in early and late swing while generating energy to the trunk throughout swing. Module 4 (hamstrings) acted to absorb leg energy (i.e., decelerate it) in late swing while increasing the leg energy in early stance. Post-hoc analysis revealed an additional module (Module 5: iliopsoas) acted to accelerate the leg forward in pre- and early swing. These results provide evidence that the identified modules can act as basic neural control elements that generate task-specific biomechanical functions to produce well-coordinated walking.

摘要

最近的证据表明,诸如行走等复杂的运动任务可能是通过协同激活的肌肉的简单潜在组织,即“模块”来完成的,这些模块被认为是为执行特定任务的生物力学功能而构建的。然而,尚无研究明确测试这些模块是否真的会产生与其相关的生物力学功能,甚至是否能产生协调良好的运动。在本研究中,我们使用肌肉激活模块(通过非负矩阵分解识别)作为肌肉控制输入,生成了正常行走的肌肉驱动前向动力学模拟,以确定每个模块对行走生物力学子任务(即身体支撑、向前推进和腿部摆动)的贡献。模拟分析表明,一种涉及五个肌肉激活模块的简单神经控制策略足以执行行走的基本子任务。模块1(臀中肌、股四头肌和股直肌)主要在站立初期对身体支撑起作用,而模块2(比目鱼肌和腓肠肌)在站立后期对身体支撑和推进都有贡献。模块3(股直肌和胫骨前肌)在摆动早期和晚期起到使腿部减速的作用,同时在整个摆动过程中为躯干产生能量。模块4(腘绳肌)在摆动后期起到吸收腿部能量(即使其减速)的作用,同时在站立初期增加腿部能量。事后分析揭示了另一个模块(模块5:髂腰肌)在摆动前和摆动初期起到使腿部向前加速的作用。这些结果提供了证据,表明所识别的模块可以作为基本的神经控制元件,产生特定任务的生物力学功能,以产生协调良好的行走。

相似文献

1
Modular control of human walking: a simulation study.
J Biomech. 2009 Jun 19;42(9):1282-7. doi: 10.1016/j.jbiomech.2009.03.009. Epub 2009 Apr 25.
2
Three-dimensional modular control of human walking.
J Biomech. 2012 Aug 9;45(12):2157-63. doi: 10.1016/j.jbiomech.2012.05.037. Epub 2012 Jun 21.
3
The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance.
Clin Biomech (Bristol). 2013 Jul;28(6):697-704. doi: 10.1016/j.clinbiomech.2013.06.003. Epub 2013 Jul 2.
7
The effect of walking speed on muscle function and mechanical energetics.
Gait Posture. 2008 Jul;28(1):135-43. doi: 10.1016/j.gaitpost.2007.11.004. Epub 2007 Dec 26.
8
Muscle and prosthesis contributions to amputee walking mechanics: a modeling study.
J Biomech. 2012 Aug 31;45(13):2271-8. doi: 10.1016/j.jbiomech.2012.06.008. Epub 2012 Jul 25.
9
Muscle force redistributes segmental power for body progression during walking.
Gait Posture. 2004 Apr;19(2):194-205. doi: 10.1016/S0966-6362(03)00062-6.
10
Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking.
J Biomech. 2010 Aug 26;43(12):2348-55. doi: 10.1016/j.jbiomech.2010.04.027. Epub 2010 May 13.

引用本文的文献

2
The effects of high-heeled shoes on gait parameters in healthy adult women.
PLoS One. 2025 Jul 3;20(7):e0327250. doi: 10.1371/journal.pone.0327250. eCollection 2025.
3
Decreased spinal inhibition leads to undiversified locomotor patterns.
Biol Cybern. 2025 Jun 4;119(2-3):12. doi: 10.1007/s00422-025-01011-7.
4
Generalizability of motor modules across walking-based and in-place tasks - a distribution-based analysis on total knee replacement patients.
Front Bioeng Biotechnol. 2025 Apr 7;13:1471582. doi: 10.3389/fbioe.2025.1471582. eCollection 2025.
5
Post-stroke Stiff-Knee gait: are there different types or different severity levels?
J Neuroeng Rehabil. 2025 Feb 25;22(1):36. doi: 10.1186/s12984-025-01582-3.
6
Motor modules are largely unaffected by pathological walking biomechanics: a simulation study.
J Neuroeng Rehabil. 2025 Jan 30;22(1):16. doi: 10.1186/s12984-025-01561-8.
7
Comparison of muscle synergies in walking and pedaling: the influence of rotation direction and speed.
Front Neurosci. 2024 Dec 4;18:1485066. doi: 10.3389/fnins.2024.1485066. eCollection 2024.
8
Reduced Achilles tendon stiffness in aging associates with higher metabolic cost of walking.
J Appl Physiol (1985). 2024 Dec 1;137(6):1541-1548. doi: 10.1152/japplphysiol.00377.2024. Epub 2024 Nov 7.
10
An Efficient Framework for Personalizing EMG-Driven Musculoskeletal Models Based on Reinforcement Learning.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:4174-4185. doi: 10.1109/TNSRE.2024.3483150. Epub 2024 Dec 3.

本文引用的文献

1
The effect of walking speed on muscle function and mechanical energetics.
Gait Posture. 2008 Jul;28(1):135-43. doi: 10.1016/j.gaitpost.2007.11.004. Epub 2007 Dec 26.
2
Modular control of limb movements during human locomotion.
J Neurosci. 2007 Oct 10;27(41):11149-61. doi: 10.1523/JNEUROSCI.2644-07.2007.
3
Motor patterns in human walking and running.
J Neurophysiol. 2006 Jun;95(6):3426-37. doi: 10.1152/jn.00081.2006. Epub 2006 Mar 22.
4
Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets.
J Neurophysiol. 2006 Apr;95(4):2199-212. doi: 10.1152/jn.00222.2005. Epub 2006 Jan 4.
5
Muscles that support the body also modulate forward progression during walking.
J Biomech. 2006;39(14):2623-30. doi: 10.1016/j.jbiomech.2005.08.017. Epub 2005 Oct 10.
6
Coordination of locomotion with voluntary movements in humans.
J Neurosci. 2005 Aug 3;25(31):7238-53. doi: 10.1523/JNEUROSCI.1327-05.2005.
7
A limited set of muscle synergies for force control during a postural task.
J Neurophysiol. 2005 Jan;93(1):609-13. doi: 10.1152/jn.00681.2004. Epub 2004 Sep 1.
8
Muscle force redistributes segmental power for body progression during walking.
Gait Posture. 2004 Apr;19(2):194-205. doi: 10.1016/S0966-6362(03)00062-6.
9
Five basic muscle activation patterns account for muscle activity during human locomotion.
J Physiol. 2004 Apr 1;556(Pt 1):267-82. doi: 10.1113/jphysiol.2003.057174. Epub 2004 Jan 14.
10
Individual muscle contributions to support in normal walking.
Gait Posture. 2003 Apr;17(2):159-69. doi: 10.1016/s0966-6362(02)00073-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验